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A general equation is derived for the maximum lossless current density which can be sustained through a
thick normal layer which is part of a superconducting-normal-superconducting (SNS) sandwich. This result is

adapted to nonuniform current densities and compared with experiments on Pb-Cu-Pb by Clarke. Agreement

is obtained when the ratio of the pair potentials at the SN boundaries is made a constant, independent of
temperature and thickness of the Cu layer. The pair potential in Cu is interpreted as an effective one which is

induced in Cu by the proximity effect due to Pb. The superconducting phase difference is calculated across

the X metal as a function of current for various thicknesses of the X layer. It reduces to the Josephson dc
current relation when the X metal becomes thick in relation to the coherence length in the X region. %'e find

that the value of the pair potential in the center of the N metal is current dependent and finite (not zero) for
all current densities including the critical.

I. INTRODUCTION

It is known from experiments' ' that a triple
layer consisting of superconductor-normal-met-
al-superconductor (SNS) can support a iossiess
dc supercux x'ent flowing perpendicular to the SN
boundaries through the normal metal even when
the normal metal is as thick as 1 p.m. The dc
supereurrent density J, has a maximum value J,.
Clarke' has shown experimentally that 4, =f (T)e ~~~~,

where f(T} is some function of temperature T, d„
is the haU-thickness of the N region, and k„ is a
decay length characteristic of the electronic prop-
erties of the N metal. These experiments' were
performed at temperatures between the transition
temperature T, and less than 0.2T, with a clean S
metal [mean free path /, » $,(T), the coherence
length of the S metal] and a dirty N metal (l„«k„')
when 2d„k„&1. Bondarenko et gl. ' reach similar
conclusions for a clean N metal.

From these experiments one may conclude that
the N metal acquires supereonducting properties
when in contact with the S regions due to the prox-
imity effect, since otherwise it is difficult to
imagine that a. supercurrent (phase current) may
pass through the N metal without a dc potential
difference across it. This implies that the elec-
trochemical potential of the superconducting pairs
p~ is constant and continuous throughout the SNS
specimen parallel to the transport current across
the SNS triple layer.

De Gennes'attackedthe SNS problem from the
theoretical point of view for both the S and N
regions dixty and obtained the exponential thick-
ness dependence of Z, and Z, ~ (T —T,)' for T close
to T,. However, as pointed out by Yamafuji et al. ,e

the boundary conditions at the SN interfaces as
used by de Gennes lead to a discontinuous phase

current across the boundaries. In the very weak
coupling limit de Gennes obtains' the Josephson'
de current-phase relation.

Jacobson' dexived the Josephson dc relation' for
a very thin oxide barrier using the Ginzburg-
Landau' (GL) equations in the S regions and a
quasitype Schrodinger-GL equation in the insula-
tor in terms of barrier height and width. In his
approach, the oxide behaves like a weak super-
conductor.

Microscopic calculations for SNS triple layers
when the S and N regions are pure (i,-~; &„-~}
were performed by Kulik' and revised by Ishii"
for T=O'K. Ishii" found that the supercurrent
density J, is a linear function of the phase for
phase differences between 0 and 7r and that J,~d„'
for 2d„» $, ($, is that of the S region). Bardeen
and Johnson" extended Ishii's calculations to
temperatures above absolute zero by employing
Galilean invariance to the quasipaxticle spectrum
in the N metal. References 10-12 assume that
the effective electron masses and Fermi veloc-
ities are the same in the S and N regions and that
the pair potential vanishes in the N region. This
has the effect that in the final equations the con-
tributions arising from the S and N regions sep-
arately are not readily distinguishable. Bardeen
and Johnson" find that at absolute zero J, changes
linearly for phase differences Q between zero and
m. When the spacing between the bound quasipar-
tiele states in the N metal and k Tbecome comparable,
they find" that J,cc sing. They also find that at
/ =2m, the value of Z, =s(d*) 'e2a™,where a and
c are temperature-independent constants and
2d*= 2d„+@go.

Baratoff et gl.'""and Yamafuji et gl.' applied
the GL theory' to weak links when the barrier is
a superconductor in the superconductzng state.
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In Refs. 13 and 14 the amount of superconductivity
in the barrier is weakened, for example, by hav-
ing only a shorter mean free path in the barrier
region as compared to the adjacent S regions, or
by an actual physical constriction in the cross
section. In Ref. 6, the values of T, and H„ the
transition temperature and the thermodynamic
critical field, are chosen to be smaller in the N
region than in the outside S regions.

It is the purpose of this work to investigate
in detail tunneling of superconducting pairs
through a thick normal layer whose bulk transition
temperature is very near absolute zero and to
calculate the critical current density J,(T). We
make no restrictions onthe S andN regions as to
clean or dirty limits. We assume that the SNS
specimen is symmetric (both S regions are the
same), that the thickness d, » $, in general and
the thickness of the N region 2d„ is arbitrary.
Furthermore, the Fermi velocities v~, and v~„,
the effective electron masses rn, and m„, and
mean free paths l, and l„are assumed to be dis-
tinctly different. It is assumed that the super-
conducting phase current density J, is continuous
at the SN boundaries and elsewhere and we express
our final results in terms of one remaining, as
yet unspecified, boundary condition. This bound-
ary condition connects the tunneling properties
of the superconducting pairs through the normal
region to the proximity effect. By comparing
the available experiments with the proposed cal-
culations over a wide range of temperatures, we
extract this boundary condition and its tempera-
ture dependence. An in-depth exact computer
study for various material parameters and bound-
ary conditions is planned as a future extension of
this work.

eS 1 2eJ,(r) =
2

4 f(r) —.V ——A(r) 4,(r)+ c.c. .
S

Assuming that the x direction is parallel to the
current flow and the superconductive phase cur-
rent is continuous at the SN boundary which is
located at x=x, (see insert of Fig. I), it follows
from Eqs. (3) and (4) that

and

F, dF, F„dF„
Xy fl X]

(5)

Xy tl Xg

where )(, is defined in Eq. (I) and O'„, F„, and X„
are defined by an equivalent equation. In the N

I.O

It is proposed that the N region in a SNS sand-
wich can be treated like a superconductor at least
as long as a lossless supercurrent flows through
it. This assumption is supported by the experi-
mental facts as discussed in the Introduction. ' ~

Such a SNS structure has a collective transition
temperature T,. It is suggested that when d„»

~ $„~
the collective T is a meaningful quantity provided
the measuring current density is smaller than a
certain critical current density J, and fluctuations
are not sufficient to break the long-range coher-
ence. The current density in the N region is by
analogy with Eq. (2)

eh 1 2e
J„(r)= 4'„*(r) —. V ——A(r) 4'„(r)+ c.c. .2m„" i Sc

(4)

II. GINZBURG-LANDAU EQUATIONS IN THE S
AND N REGIONS

0.8

Assuming that the complex order parameter 4'

can be written as

2e
@,=F(r)e'sa' ' =F,(r)exipx, +— A dr,

F2 m 2 J2-
s +~2/2 s g2~ F PF'( ) ' Ke 'F4 (2)

where $, is the coherence length as defined in the
bulk of the S metal. The supercurrent density J,
ls

where Q, and E, are real, then the real part of the
first GL equation is

0.4

0.2
I

-0.5 l.5
0
-I.O 0 05 IO

log ()'I(,l/(, )

FIG. 1. Shown are solutions of Eq. (30) for constant
values of b—=B [Eq. (12)].f &

is the normalized order
parameter [Eq. (9)] at the SN boundary in the S metal
located at x& (see insert), y is defined by Eq. (11) or
(Sa) and )$„~ /$, = (n( by Eq. (14) and Eqs. (37), (41),
or (44). When the temperature T —T, , the value of
log(y($„)/E, ) «0 and when T —T, „ the log(y)$„)/f, )» 0.
& = (I&o I/Inc, )) &

is a measure of the match of the pair
potentials at the SN interface. The base of the logarithm
is 10.
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region the equation equivalent in Eq. (2) may be
written assuming J„=J,:

E2 2 2

E -0
F2(~&) 5 joe II F4 rt (7)

Equation (7) shows the following: In the center of
the N region, at x =x„one would expect that
E„'/E„'(~) is very small compared to unity when the
N region is thick, and by symmetry E2(x) is a
minimum there. Therefore, d'E/dx' must be lar-
ger than zero in the center of the N region at
x =x, (see insert of Fig. 1}.When the transport
current is zero, for example, one can readily see
from Eq. (7) that g must be negative, or the bulk
coherence length („must be imaginary. This is
compatible with an N metal whose bulk transition
temperature is very close to absolute zero. If
one were to apply Eq. (7) to the N metal in bulk
form above its transition temperature T, isolated
from the S xegions, the only reasonable solution is
E„=0. %'hen the N metal is in contact with the S
metal, however, superconductivity is induced in
the N metal due to the proximity effect, E„' be-
comes largex than zero everywhere and its transi-
tion temperature becomes the collective T, of the
SNS sandwich. In effect, E„' is controlled by E',
through the boundary conditions at x,. However,
$„remains that of the bulk, by definition, and is
governed by T~.

Gor'kov" has related the complex order para-
meter 4', to the pair potential 4~ by

where n, is the total electron density and }to,(T, I,)
is a function" of temperature and mean free path
of the electrons. %e postulate that a similar equa-
tion exists for 4„. This postulate is not necessary
in what follows below except that it is convenient
for the interpretation of the boundary conditions
at x,.

%'e would like to point out, however, that &~„
is an effective pair potential" near the SN bound-

ary, induced by the proximity effect, and not that
of the N metal far away from the SN boundary (in
the bulk}. To understand this we suggest the fol-
lowing interpretation: Pairs diffuse or tunnel
from the superconductor into the normal metal
while normal-like e1ectrons move in the opposite
direction such that in the time average charge
neutrality will be conserved. Since pairs cannot
breakup instantaneously into single electrons in
the N metal and single electrons cannot pair in-
stantaneously in the S metal, the pais will carry
with them in the N metal the memory of the [N(0)V],
interaction which will be retained for a certain
time regardless of what the intrinsic bulk [N(0)V]„

sp„'" r„(x/(,)
N.xz. &.(") i no,(")i

y -=(m„/m, }(Z',/F'„)
~ „,

m n y, c, dy /dx

(11}

(12)

m, $, 4m

8!eiE', ( ) ' c

~ —t2/]s

I' =- —[(5y)2/n]P,

z'= —~(x/h. )'
(15)

(15)

For our problem the N metal is not superconduc-
ting in the bulk at temperatures which are of con-
cern to us and, therefore, n & 0 since $2&0.
Hence f2 and z' are positive. Equation (5a) corre-
sponds to the boundary condition (5) and the defi-
nitions y and b are the matching conditions for E
and 4~ at x„ the values of which are undeter-
mined for the time being.

The one-dimensional, normalized equations
corresponding to Eqs. (2}and (7) ared'f, i'

dx
+ 1 f' ——f= 0 for —S regionsf 4

p
+ 1 —y'+ —y=0 for N region.

dZ

(2a)

The SNS problem can be solved by solving Eqs.
(2a) and (7a) with the boundary conditions (5a) and
(12). The three parameters n, 5, and yb are
governing the solutions of f and y for a fixed value
of i. n and yb are temperature-dependent-mate-
rials parameters. The one-dimensional form of
Eqs. (2a} and (7a) implicitly assumes that the
current densities are uniform over the cross sec-

interaction of the new host metal is, even when
the latter is zero N. (0) is the local density of
states per unit energy and per unit volume at the
Fermi level and V is the effective BCS electron-
phonon interaction constant. Thus, in the time
average a reduced number of pairs will live in
the N metal paired by the [N(0)V], interaction and
the exact number density depends on the rate with
which they are supplied to the N region by the S
region and the rate with which they breakup, thus
giving rise in the time average to an effective
decay length

~ $„~ in the N region.
For the purpose of normalization of Eqs. (2),

(5), and (7) we normalize the distance x by $, in
both the S and N regions and introduce the follow-
ing definitions:

f=~.(x/t;.)/F, (-),
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tions of the S and N regions. The negative sign in
front of d'y/dz' guarantees that at x, the function

y has a minimum, and the positive sign in front
of I' is essential in obtaining a maximum lossless
current for a given SNS structure as will become
apparent below.

= 2(y'-yl) y'(2-yl-y')+ ~ ~ (17)

Introducing the new variable P„'-=y'-y,'this be-
comes

N [(y2+ am)(b2 y2)]1/2dg
(17a)

with

a'= -(1 --*y')+ [{1--'y')'+2I'/y'I'" (16)

b.'=+ (1--*.y,')+ [{1--.yl)'+2I'/yll'". (19)

When Eq. (1Va) is integrated" between the limits
z and z„one obtains a solution which is a Jacobi
elliptic function:

III. SOLUTIONS OF EQS. (2a} AND (7a}FOR N THICK

We shall solve first Eq. (Va) with the coordinates
as shown in the insert of Fig. 1. y is symmetric
with respect to x» the center of the N region,
where y(x, )=—y(z, ) =y, . The SN boundary is at
y(x, ) -=y(z, ) -=y, . When Eq. (Va) is integrated once
with the boundary condition dy/dz. = 0 at z„the
result is

Im/y', = (2m, „-y', ). (21a)

I =m =4e-"i[1-(1-y')"'] (23)

As can be seen from Eq. (21a), the value of y2

depends sensitively on the current I, whereas

y, is essentially independent of I in the thick
limit. Equation (23) is the critical current in
terms of the thickness of the N l.ayer and the
value of the order parameter in the N region at
the S+ boun, dary.

We now proceed and solve Eq. (2a) for the order
parameter f in the S region. When Eq. (2a) is
integrated once one obtains with the boundary
condition df /dx =0 at x =0 and the definition

f (x = 0) =f o (see inse—rt of Fig. 1):

d
2 2 2, 2 ~ ~ 2s

24

One can see from Eq. (21a) that I' reaches a maxi-
mum value I,' when y2 my From this it follows
thatI, =m, „. As mentioned at the end of Sec. II,
and as can be seen from Eq. (21a), a maximum
value of I' would not exist if one were to reverse
the sign in front of I2 in Eq. (Va) and consequently
also in Eq. (2la). Furthermore, in the thick limit,
y,'»y2 and u, = &l aid„& 1. It then follows from Eq.
(20), neglecting terms of order (m, „sinh2u, )' and
smaller, that (m„-1)

yq = 2m~„[cosh u~(1 —4m'„sinh2u~) —1]

ol

y' —y,'= b„'m, „sd'(u
~
m„), {20)

u = [-'~a ~(a„'+ b'„)]'/'(x, —x). (22)

Consider the case for which X is thick and the
normalized critical current I,»I-O. One would
expect that 1»y, 4 0, provided phase coherence
exists within the N region. Then m, „=& y,'«1,
b„'-2, z(a„'+b'„)-1. Furthermore, if we assume
that a current I&I, is flowing through the N region,
one would expect that y, (I = 0)& y, (Ie 0) + 0. Since
the m, „value cannot change drastically for a fixed
SNS structure with and without a current, m, „
will remain small compared to unity and the term
I2/y', must be in general of the same order of
magnitude or smaller than y,'. Hence y', must be
a function of I.

Neglecting terms of order y', and smaller in Eq.
(21) one obtains in the limit that N is thick:

where m„ is defined" as the Parame&e~ (0» m„» 1)
and mx„= 1 —m„. mx„and ~ are defined by

g 1 1 —g
*+&* 2 f(&--' ~'&'+ &'/~'I"*) '

(21)

With $2 —=f20 f2 Eq. (24)-can be cast into the same
form as Eq. (1Va) which leads to a solution sim-
ilar to Eq. {20):

f', f'=b', m„sd—'(u~ m, ),

with

m „=1 —m, =a', /(a', + b', ),

u = [—,'(a,'+ b', )]'/'x,

(26)

(26)

(27)

IV. MATCHING OF BOUNDARY CONDITIONS
AND CRITICAL CURRENT

If we assume that both S and N are thick, then
the value of f,-l and y, «l. Since for a thick
N region the critical current (maximum lossless
dc current) is very small and therefore cannot

a,'=+ (1- —,
' f', ) + [(1—zf')' —2f '/f'] '/' (28)

b' = —(1 —zf')+ [(1—'f')' —»'/f']" -(29)
When the 8 region is thick (d, »1), the value of
f', will depend on the current density, hence on
2d„. When 2d„-0 the value of f', -& at J„and
when ~ad„»1, the value f', -1 for all super-
current densities.
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have any effect upon the values of f and y at the
NS boundaries, one may neglect the current terms
in Eqs. (IV) and (24) when applying these to the
boundary condition (5a) at x,. With the definition
Eq. (12) one obtains an equation for f, in terms
of n, b, and y. The solution is

y'/l~l + I *[(y'/I~ I)(2 —b)+ I]"
y'/l~l+b (30)

A plot of f, as a function of y/~n =yl )nl /$n for
constant b values is shown in Fig. 1.

The critical current density, Eq. (23), when
cast into electrostatic units (esu) [ Po =2.068x10 '],
1S

[ I (I bf2)&l2]e 24nll &nl

2n'x'I( I yb

(31)

where f, is given by Eq. (30), yb by Eq. (5a), and
b by Eq. (12). yb and lo. l are temperature-de-
pendent- material parameters. In one extreme
limit when T-T, , the value of $, ~ and there-
fore log(yl)„l/$, )--~. The other extreme is
the limit T-T,„. Then I $„)- and log(yl gnl/$n)

+. As can be seen from Fig. 1, this span of
temperatures can be traversed only if B'=b&2.

It also follows from Fig. 1 that f2-1 for the
low-temperature limit. In that limit &, [Eq. (31)]
would become imaginary unless 5 &l. We there-
fore assume quite generally that b &1. The mean-
ing of the latter statement is that I &a„l -I &anl

at the NS boundary at x,. This is very reasonable
for temperatures for which the corresponding
N metal in bulk form is in the normal state. In
the limit that T-T, it follows from Eq. (30) that

f, -yl („I/2(,«1 and therefore, when f, is sub-
stituted into Eq. (31) one finds 8, o- (4T)'. In the
other extreme when bf', -1 the critical current
density J,~(&T) as for an SIS (I is an insulator)
Josephson junction.

If the value of 6 were known for given materials
parameters, y would also be known from Eq. (5a).
Since Ial is also known at a given temperature,
f, can be obtained from Eq. (30) or Fig. 1. This
means that in an idea1. situation, J, is uniquely
determined from Eq. (31) without any adjustable
parameters. Unfortunately, 5 is not known with
certainty. It is determined by the microscopic
boundary conditions of the Gor'kov pair potential.

c at x,. Therefore J, , when calculated from
Eq. (31), depends on b for a given set of materials
parameter. Hence, one should be able to deter-
mine the microscopic boundary conditions when

comparing Eq. (31) with good experiments. In
an ideal situation a good experiment constitutes
an SNS specimen which has a small enough cross-
sectional area such that the current density is

uniform. It also implies, even more importantly,
that the evaporation of the S and N layers is clean
enough that impurities at the SN interface, such
as a thin oxide layer, will. not change the micro-
scopic boundary conditions sufficiently to influence
the critical. current density. Only in the latter
instance can the microscopic boundary conditions
be applied meaningfully to an experiment.

where y2 from Eq. (20) was substituted.
When one integrates" Eq. (33) one obtains

@bi
ny'[ —'

I o I(a' + bn)] &&

x jm„u, +(n —m„)11[n;u,lm„]}, (33a)

where a„, b„, and m„=l —m, „are defined by Eqs.
(18), (19), and (21), u, =d„[—,

' nl(a'„+b'„)]~' and
n =m„—b'„m, „/y', . II[n;u, lm„] is an incomplete
elliptic integral of the third kind. Equation (33a}
is an exact solution of g, —g, for arbitrary thick-
nesses 2d„of the N metal.

When the thickness of the N region is larger than

(n, then u &0.5 m -1~ n(a'+bn)-I ~ b'-2.
II[n;u, lm„-l] approaches the value given by Eq.
(111.04}, Ref. 18.

When Eq. (21a) is solved for y,'with m, „=I, one
obtains

y'=I (1 *[1—(I I/, )' ' 'j}I. (21b)

V. CURRENT PHASE RELATION

The total phase difference of the superconduct-
lng phase across the SNS sandw'1ch 1s

tn" X2 X$
g "2 i

2 dy =-2, dx —2yb —,dx, (32}
x=Q x=0 f xg

where the second term on the right-hand side is
the total phase difference 2(1, —y, ) across the N
region (see insert of Fig. 1 for coordinates). In
Eq. (32) the value of i is that of Eq. (13) and f and

y are defined by Eqs. (9) and (10). The phase Z is
defined by Eq. (1) for the S regions, and by a simi-
lar equation for the N region. yb is given by Eq.
(5a). Equation (32) is the actual total phase differ-
ence y. between two points and it should be noted
that the definition of the phase difference in Refs.
8, 13, and 14 is not the same. There""' the
phase difference is defined as the phase differ-
ence between solutions for a constant supercur-
rent density 4, zoitb and wi,Nouf the weak link (N
region).

In this section we shall be concerned with the
phase difference 2(yn —1,) across the N region
only:

x2 dx
y'+b'„m, „sd' [u(x)lm„j '
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When the latter equation is substituted into Eq.
(33a) with the above approximations for m„-1,
one obtains for the phase difference across one-
half the N region.

(I/I, ) tanhd„v In I

1 +[1 —(I/I )']'" ' (33b}

where d„llnl in conventional units is d„/~ g„~.
Figure 2 is a plot of Eq. (33b) for various thick-
nesses d„v'ln I. When the N region is sufficiently
thick tanhd„v'lo, I -1 and in this limit Eq. (33b}re-
duces to

I/I, = -sin[2(X, —ii, )]. (33c)

This is the Josephson dc current relation' which
is obtained in the very weak coupling limit.

In this limit the phase difference ~2(1, —ii, )~

across the N region approaches —,'m at the critical
current, and it is smaller than 2 n' at the critical
current when the N region becomes thin and the
phases between the superconducting regions couple
more strongly (see Fig. 2). This conclusion does
not take into account any phase differences in the
S regions. For a fixed thickness of the N region
there are two solutions for 2(g~ —lt, ) for the same

current. The lower branch in Fig. 2 is expected
to be stable. Similarly, p', has also two branches
[Eq. (21b)]. The upper branch [positive sign in
front of the square root of Eq. (21b)] is the stable
branch for Y', and corresponds to the smaller phase
differences in Fig. 2 for a given current density.
Whatever the thickness of the N region may be,
the values of ~2(Z, —Z, )~ are always zero and x at
I =0 and the corresponding p', values are 2I, and
zero. This means that when ~2(y, —}i,)~ =x the
order parameter is zero in the center of the N
region and it behaves similarly to that of an Abri-
kosov vortex when cut through its center. A phase
difference of w is then sustained across the point
where the order parameter is zero. However it
should be realized that at the maximum current
density the order parameter in the center of the
N region does not become zero, but has a finite
value y, = &I, in normalized units [see Eq. (21b)] .
Furthermore, the slopes of -2(g, —y, ) with re-
spect to I/I, for I-O are tanhd„v'Inl and
-cothd„v'Inl at -2(g, —y, ) =0 and w, respectively.
This shows that the slopes are perpendicular to
each other as can be seen from Fig. 2.

When the total phase difference 2(y, —y, ) across
the SNS is sandwich is calculated as defined by
Eq. (32), the contribution from the S regions modi-
fy the current phase relation from that shown in
Fig. 2. Although the phase difference is defined
differently in Ref. 13 from that of Eq. (32), the
results of Ref. 14 show a current phase relation
which is different from that of the Josephson rela-
tion' in the weak coupling limit. It is not obvious
why such a deviation from the Josephson relation
should exist.

VI. MEASURED CURRENT DENSITY AND JOSEPHSON

PENETRATION

0.4 0.8 l.2

FIG. 2. Shown is the phase difference of the order
parameter across the normal region as a function of
supercurrent for various thicknesses of the N layer
tEq. (33b)]. d„ is the half-thickness of the N region
(see insert of Fig. 1). The curve for u

&
=0.1 lacks

accuracy, since it is somewhat outside the range of our
approximation. When d„/~ 5„~ & 1.5 the very weak coupling
limit is reached which leads to the Josephson dc current
relation t Eq. (33c)].

When one of the dimensions of the SNS specimen
transverse to the current flow is larger than the
Josephson penetration depth the current density
is nonuniform over the cross section of the speci-
men. We therefore have to include effects due to
nonuniform currents in our results when comparing
theory with experiments to which nonuniform cur-
rent densities may apply. In a large superconduc-
tor the current flows near the surface over a depth
~, and in the N region that depth is ~~. Since in
our normalized units a'Vx Vx(Vit) = i= -f'Vii
= -i, sin[2(y2 —y, }]in the weak coupling limit, we
may replace approximately (Vg)„by [y, (y) —X, (y)]/
(&, +d„), where y is the normalized coordinate
perpendicular to the current flow and x= X,/$, . The
point 1 is chosen a distance &, (&,/t, in our nor-
malization) from the SN boundary in the S region,
and the point 2 is in the center of the N region.
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We assume that the gradient of y has no x depen-
dence. Therefore, V [Vy(y)] is zero and

~'~'&Xx,
ay',

"= t, (A., +d„)sin(24y»). (34)

ln the low cur-ren& limi&, when sin(26}t») is re-
placed by 2hZ», one obtains from Eq. (34}a solu-
tion b, y» =(&y»),e ' ~ with &~ the usual Josephson
penetration depth" in the N region which is in
esu units:

cp 1
16 ' J.(I ~ 1,))„ (35)

If the cross-sectional area of the N region is w'

and ~~ &4w, then the supercurrent will flow near
the surface of the N region through a cross-sec-
tional area of approximately 4w~~ with approxi-
mately uniform current density J,. It is assumed
that Eq. (35) is also approximately correct when

Then the aPParent measured critical
current density &, is (I is the measured critical
current) &, =I, /w' = &,4w&~/~', where &, is
the critical current density given by Eq. (31).
Therefore for ~~& —,'w the value of the measured
critical current density J, in esu units becomes

pare our theory with some of the results shown in
his Figs. 13-15.

We use the following relations and parameters
for the S metal:

(, = 0.74[4~,/(1 —T/T, )]", (3V)

(38}

Xo.'= 1+'C(3)p,/v'. (40)

The transition temperature T, is obtained by ex-
trapolation of the experimental results to J,=0.
The T, values differ slightly from specimen to
specimen and it is indicated on our figures when a
comparison is made near T, such as 7 K. Our
results below 6.5 K are not affectedbya slight vari-
ation of T, within the accuracy of our comparison.

For Pb the value of $0 =830 A. Although the mean
free paths l, and l„were measured' to an accuracy
of +20%%uo, the values of the mean free paths as
stated in Ref. 2, were used in the calculations with-
out any adjusting.

X, =Xz(0)/[2}to,(l —T/T, ))
' ', (39)

where A.~ (0) = 390 A, p, = hvar, /2wk Tl„vr, = 0.434
x 10' cm/sec, 1, =10' A, and

4 cy J 1/2

ur 16m' (d„+A.,) (36)
For the normal metal (copper) we used in gen-

eral

One can also find an exact solution of Eq. (34)
for arbitrary current densities when w»~~. As-
suming that the maximum lossless current density
J, is reached when the phase difference at the

surface of the N region across it is 26}j„=—,'w, we
find in terms of Clausen's or Lobachevskiy's func-
tion that at J, the penetration depth ~~ is increased
by 3.6% compared to that of the low-current-den-
sity limit [Eq. (35}].

One may also speculate that it might be possible
to go to larger phase differences at the surface
of the N region, maybe even up to 2Ly» ——n. In
that case the current density at the surface would
decrease while the maximum lossless current
density would move into the N region away from
the surface until at 24'» = m the current density at the
surface would be zero while at some point below
the surface it reaches the maximum value of J,
and then decreases to zero towards the center of
the N region. Such a solution is mathematically
possible from Eq. (34) although physically unlikely
to occur in the experiments. ' 4

VII. COMPARISON OF THEORY AND EXPERIMENT

Clarke's experiments' extend over a wide range
of temperatures for a representative number of
specimens whose thicknesses of the normal layers
range from about 2000 to 7000 A. We shall com-

I I

2d„= 3790k

I

CU

E
O

6.8
T [K]

7.0

FIG. 3. Solid lines show solutions of the critical cur-
rent density [Eq. (31)] as a function of temperature near
T, for two values of the boundary condition B [Eq. (12)]
at the SK interface. The experimental points are from
Ref. 2, Fig. 13.

(41)

(42)

with $r =kvr„/2vkT and vr„=1.13x1(y' cm/sec,
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I I I I I I I I I I
Xo„' =1+7C(3)p„/v', (43)

O I I I I I I I I I I

1.6 1.8 2.0 2.2 2.4 2.E
I /2 K' I/2

FIG. 4, Shown is the same specimen as in Fig. 3 for
lower temperatures. The experimental points are taken
from Ref. 2, Fig. 14. The current densities J, and J,
are in A/cm, J, signifies a uniform current density in
the N region [Eq. {31}]and J, refers to nonunifor~
current flow through the N layer [Eq. (36}]which occurs
for the larger current densities. For details, see text.
The base of the logarithm is 10.

6.6 6.8 7.0
T [K]

FIG. 5. Similar to Fig. 3 except for a thinner N layer.
For the larger current densities the current flow across
the N layer is nonuniform as in Fig. 4. The experimental
points are from Ref. 2, Fig. 13. For details, see text.

with p„=ffvz„/2vkTl„. Equations (41) and (42) with
the definitions for $~ assume implicitly that the
transition temperature of the N metal in the bulk
T „=0.

Since Cu is dirty in Ref. 2, one can check our
results for Cu with T,„g0. In the dirty limit de
Gennes' gives an expression for 1$„1when T/T, „
&&1

1&„1=(-,'t'rl „)'~'{1—2/[1.39+ in(T/T, „)]) '~'.

(44)

%'e have evaluated our results with both equations,
namely Eqs. (41) and (44), with the assumption
that for Cu the value of T,„=10 K in Eq. (44).
Although the differences in the final results of J,
were not very large, the overall fit to the experi-
mental results indicated that Eq. (41) is most like-
ly the better of those two choices. The figures
shown below are calculated with Eq. (41).

Figure 3 shows a plot of the square root of the
critical current density 8, , Eq. (31), as a function
of temperature when the N metal is 3790 A thick,
the mean free path in the N metal J „=105A and
T', =7.07 K. The solid curves are calculated with
8 =

I ho„ I /I ho, 1=1 and 0.316 at the SN boundaries.
The reader should be reminded that A~„ is an ef-
fective pair potential, induced by the proximity ef-
fect in the N metal, as explained in Sec. II. Obvi-
ously, the temperature dependence of ~J, depends
on the boundary conditions at the SN interface.
There are no adjustable parameters in the calcula-
tions except the boundary condition B. We shall
comment on B below.

Figure 4 shows the temperature dependence of
the critical current of the same specimen as shown
in Fig. 3 for lower temperatures. The solid lines
are calculated with B=1 and B=0.316 from Eq.
(31) and Eq. (36), where the latter current density
is the apparent measured critical current density
J, due to nonuniform current flow through the N
metal. The smaller one of both current values is
plotted at a fixed temperature. For higher tem-
peratures it is the value J', [Eq. (31)] that is shown
and for lower temperatures it is 8 [Eq. (36),
with ge =0.02 cm] that is plotted. Again, the bound-

ary condition B=0.316 gives a good fit to the ex-
perimental results of Ref. 2, Fig. 14, shown by
the solid points. No other parameters are ad-
justed.

Figure 5 is similar to Fig. 3 for a specimen with
a thinner copper layer. For current densities
larger than about 15 A/cm' the value of 8, is
plotted, indicating nonuniform current flow. The
experimental points (Ref. 2 Fig. 13) of the current
density follow the temperature dependence of the
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I I I I I I I I I

I l I I I l l l l

I.O l.2 14 1.6 I.B 2.0
I/2 ' I/2

FIG. 6. Similar to Fig. 4 except for a thick N layer.
The experimental points are from Ref. 2, Fig. 14. Cur-
rent densities are in A/cm2. The base of the logarithm
is 10.

calculated results with boundary condition B
=0.316. A slightly smaller B value might lead to
a better fit to the experimental results.

Figure 6 is a comparison of the temperature de-

pendence of the critical current density for a thick
N layer at low temperatures. The experimental
points are taken from Ref. 2, Fig. 14. Again,
boundary condition B=0.316 seems to give a rea-
sonable fit of our theory to the experiments.

Figures 7 and 8 show the thickness dependences
of the critical current densities at constant tem-
peratures and the experimental points and crosses
are taken from Ref. 2, Fig. 15. The solid lines at
T = V K were computed with T, = 7.08 K, /„=100 A,
and l, = 10' A. Each experimental point, however,
had slightly different T, and L„values. The chosen

T, and l„values for the solid lines are average
values and the exact fit of theory and experiment
at T =7 K depends on the exact choice of T, since
T is very close to T, . This problem does not
arise in Fig. 8, since at T =3 K the exact value of
T, does not change the calculated curves. In Fig.
8, the average mean free paths used in the calcu-
lation were f„=135A and l, =10' A.

We have compared our theory to the experimental
results by adjusting the boundary conditions of the
pair potential [Eq. (12)] at the SN interfaces. We
have also used various other values of B, not
shown in the figures. For most specimens of Ref.
2, a constant value of B=0.316 gave a reasonable
fit over all temperatures and thicknesses investi-
gated. We compared also our theory with the ex-
perimental results by making y =constant [Eq.
(11)]. Although in certain temperature ranges and

particularly for T =constant, as for example in
Figs. 7 and 8, we were able to fit reasonably the
theory to the experiments, the overall fit for all
temperatures investigated was by far better for B
a constant than y a constant. Thus, the continuity
or discontinuity of the pair potential as the SN in-
terfaces [Eq. (12)] is the important parameter

0 2000 4000
2d„A

FIG. V. Thickness dependence of the critical current
densities J~ [Eq. (31)j or Jc [Eq. p6)] for a constant
temperature of 7 K. The solid lines are calculated with
a mean free path of 100 A. in the N metal and 104 A in
the 8 metals. The experimental points and crosses which
have mean free paths close to these values are taken
from Ref. 2, Fig. 15. Current densities are in A/cm .
The base of the logarithm is 10.

I

5000
I I

5000 .7000
2df) A

9000

FIG. 8. Similar to Fig. 7 except for 7 =3 K. The ex-
perimental points are taken from Ref. 2, Fig. 15. Cur-
rent densities are in A/cm2. The base of the logarithm
is 10.
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which controls the critical current density and not
that of the order parameters [Eq. (11)] for all
temperatures and thicknesses investigated.

VIII. BOUNDARY CONDITIONS

(46)

De Gennes' finds that go/N(0)V is generally con-
tinuous from which it follows that

Boo =N„(0)V„/N, (0)V, . (4&)

Since i, /o, =1.056x10 "Q cm' for pb and 1„/o„
=0.651x10 "Q cm2 for Cu, where g is the conduc-
tivity it follows from the free-electron theory that

m„/m, =0.481 and n, /n„=0. 484. Therefore, one
obtains for Pb-Cu the values B«,=0.799 and B~
=0.139, the latter for T =10 6K. The B value
found by comparing our theory with Clarke's ex-
periments is B=0.316. We have also compared the
experimental results' with our theory using B~
=0.139 and found that we could not get agreement
with that boundary condition.

Assuming that Zaitsev's boundary conditions can
be applied to the Pb-Cu system, say B~,.«, then we
find that the experimentally obtained B value cor-
responds to a A~„at the SN boundary which is
smaller than that predicted by B«, by a factor of
about 2.5, but larger than that predicted by BDG

by a factor of about 2.3. From the experimental-
point of view it seems certainly easier to justify
a decrease of h~„at the SN interface due to im-
purities (oxide layer) introduced in the evaporation
process of the SNS layers than it is to justify an
enhancement of ~~„.

Assuming de Gennes's boundary condition were
to apply such that B~ =B=0.316. One then obtains
trom Eq. (47), a value of N„(0)V„which corre
sponds to a transition temperature of Cu of about
0.05 K. This cannot be correct and therefoxe, as
pointed out above, "one must interpret 4~„as an

The continuity of the phase current density at the
SN boundary leads to relation (5a} with the value
of 5 [Eq. (12)] unspecified. Our solution would be
completely specified if 5 -=B' were known.

Zaitsev" considered the bounda, ry conditions of
the pair potential at the SN interface from the
microscopic point of view fox' two supereonduetors
whose transition temperatures in bulk form, T„
and T,„, are not too far apart. At a temperature
T between T,„and T„he finds that the pair poten-
tial 4~ is continuous for specular electron reflec-
tions and mezz~ for diffuse electron reflections
at the SN boundary such that

(45)

induced pair potential in the N metal which arises
from the S metal and not that due to the intrinsic
N„(0}V„ interaction in Cu. Therefore, one cannot
draw any conclusion from the experiments regard-
ing the intrinsic N„(0)V„ interaction of copper, at
least not to first approximation because the induced

h~„ is much larger than its intrinsic value.

IX. CONCLUSIONS

We derived a general equation for the maximum
lossless current density 4, [Eq. (31)] which can
be sustained across a symmetric SNS triple layer
provided the thicknesses of the S layers are larger
than $, and the thickness of the N layer 2d„&

~ $„~.
No restrictions are made concerning the clean or
dirty limits of the S and N metals. The value of
J, depends also on the boundary condition B [Eq.
(12)] which is a measure of how well the pair po-
tentials at the SN boundaries are matched. The
premultiplier of the exponential term of Eq. (31)
has in general a rather complicated temperature
dependence which is linked implicitly to the bound-

ary conditions at the SN interfaces. The premulti-
plier is also proportional to (T —T,)" where n may
vary from 1 to 2. The exponent of the exponential
term is also temperature dependent through

~ $„~
[Eqs. (41) or (44)]. Equation (31) was adapted to
nonuniform current flow across the N metal [Eq.
(36)].

Equations (31) and (36) were compared to experi-
ments by Clarke2 (Figs. 3-8). The restriction
d, &g, is always satisfied in Ref. 2 for T ~7 K.
W'e found that agreement between theory and ex-
periment can be obtained over a wide range of
temperatures and thicknesses of the N layer pro-
vided we let the ratio of the pair potentials at the
SN boundaries ( ho„(/( ao, (

= B be a constant for a
given SNS specimen. We find B™0.3 for all the
specimens investigated. This might be rather
fortuitous and the exact value of B is probably,
within limits, not of significance since B might
depend on the cleanliness of sample preparation.
The temperature independence of B for a given
specimen is, however, of significance since it tells
us that the ratio of the pair potentials at the SN
boundaries does not vary with temperature (for ex-
ample, Figs. 3 and 4). This implies that the pair
potentials in the S and N regions have the same
temperature dependences. It appears also that
this ratio is independent of the thickness of the N
layer, at least to first approximation (Figs. i and

8).
In the present theory ~~„ is interpreted as an

effective pair potential in copper, induced to first
approximation by the proximity effect of Pb in Cu,
and not that due to the intrinsic electron-photon
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interaction which Cu might possess in bulk form.
The latter is probably much smaller than the
former which is corroborated by the fact that A~„
and h~, at the NS boundaries have the same tem-
perature dependences (B=const).

The square of the order parameter (superelec-
tron density) in the center of the N region is finite
(not zero) for all current densities including the
critical current density [Eq. (21b)]. Its value at
the critical current density is 50% of its zero-cur-
rent value.

The thickness dependence of the phase difference
of the order parameters across the N region is
given by Eq. (33b) and Fig. 2 as a function of cur-
rent. When the N layer becomes thick compares to
($„(, e.g. , 2d„/~ $„(&3, one approaches the very

weak coupling limit in which case Eq. (33b) re-
duces to the Josephson dc current relation, Eq.

(33c). When the thickness of the N layer is re-
duced, the phase difference across the N layer is
less than —,'w at the critical current density as the
two S sides couple more strongly.

Preliminary exact computer solutions for the
general case confirm the accuracy of the above
analytic approximation. The complete numerical
results will be published separately" in Paper II.
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