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Current transport through low-angle grain boundaries in high-temperature superconductors
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We consider mechanisms which can account for the observed rapid decrease of the critical current density
Jc(u) with the misorientation angleu through grain boundaries~GB’s! in high-Tc superconductors~HTS’s!.
We show that theJc(u) dependence is mostly determined by the decrease of the current-carrying cross section
by insulating dislocation cores and by progressive local suppression of the superconducting order parameterc
near GB’s asu increases. The insulating regions near the dislocation cores result from a strain-induced local
transition to the insulating antiferromagnetic phase of HTS’s. The structure of the nonsuperconducting core
regions and current channels in GB’s is strongly affected by the anisotropy of the strain dependence ofTc

which is essentially different for YBa2Cu3O7 and Bi-based HTS’s. We propose a mechanism of the progressive
superconductivity suppression on GB’s withu due to an excess ion charge on the GB’s which shifts the
chemical potential in the layer of the order of screening lengthl D near the GB’s. The local suppression ofc
is amplified by the proximity of all HTS’s to a metal-insulator transition, by their low carrier density and
extended saddle point singularities in the electron density of states near the Fermi surface. Taking into account
these mechanisms, we calculatedJc(u) analytically by solving the Ginzburg-Landau equation. The model well
describes the observed quasiexponential decrease ofJc(u) with u for many HTS’s. Thed-wave symmetry of
the order parameter weakly affectsJc(u) in the region of smallu and cannot account for the observed drop of
Jc(u) by several orders of magnitude asu increases from 0 tou.20° –40°.@S0163-1829~98!06121-9#
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I. INTRODUCTION

Mechanisms of current transport through grain bounda
~GB’s! in high-temperature superconductors~HTS’s! have
attracted much attention. The critical current densityJc(u)
through GB’s is very sensitive to the orientation of the ad
cent crystallites and strongly decreases with the misorie
tion angleu in the range fromu.3° –5° tou.30° –40°.1–7

The d-wave symmetry of the order parameter in HTS’s a
contributes to the decrease ofJc(u) with u and gives rise to
novel effects, such asp junctions and fractional vortices o
GB’s.8–12 The rapid decrease ofJc(u) with u essentially
limits the current-carrying capability of HTS materials whic
inevitably contain GB networks or colonies of misorient
grains.13–18For instance, the decrease of the fraction of hig
angle GB’s in biaxially textured HTS’s substantially in
creased the critical current to a higher level determined
vortex dynamics and pinning, rather than by the G
transparency.19–21

A conventional model22,23 describes a symmetric low
angle GB’s as a chain of edge dislocations with the Burg
vector b perpendicular to the GB plane~Fig. 1!. The struc-
ture of GB’s in HTS’s can be more complicated than t
idealized one shown in Fig. 1 due to partial GB dislocatio
faceting, long-range strain fields, and compositional va
tions near GB’s.24–31These factors give rise to structural an
chemical inhomogeneities along GB’s on a broad variety
scales, from the nanoscale of individual dislocation cores
the macroscale of GB facets. Yet even in those rare ca
when the atomic structure of a GB is known, the effect
this structure on superconducting properties remains unc
570163-1829/98/57~21!/13878~16!/$15.00
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since the correlation between atomic displacements an
microscopic mechanism of high-Tc superconductivity is still
uncertain. In general, the material inhomogeneities alo
GB’s cause modulations of the superconducting coupl
across GB’s which determines its global critical current de
sity Jc after averaging the microscopic supercurrentsj (x)
over the relevant spatial scales.

The GB dislocation structure naturally accounts for t
decrease ofJc(u), if one assumes that there are regions o
suppressed superconducting order parameterD near the dis-
location cores which block the supercurrent through GB1

These nonsuperconducting core~NC! regions of radiusr i
;b can result from local compositional and hole concent
tion variations, additional electron scattering, and signific

FIG. 1. Chain of edge dislocations which form a symmet
low-angle grain boundary in they-z plane. The nonsuperconductin
core regions are shadowed.
13 878 © 1998 The American Physical Society
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57 13 879CURRENT TRANSPORT THROUGH LOW-ANGLE GRAIN . . .
strains near the dislocation cores. High-resolution elect
microscopy has shown that the low-angle GB’s do consis
chains of edge dislocations separated by regions of a we
distorted crystalline lattice and also exhibit composition
variations and strain fields near the Cu-rich dislocation co
on the scale.10–300 Å both along and across GB’s.24–31

The dislocation model predicts the critical misorientati
angleuc52sin21(b/4r i).20° –40°, above which the NC re
gions overlap, and GB’s become a continuous insulating
normal Josephson contact withJc much smaller than the
intragrain critical current densityJg . For u,uc , this model
gives an approximately linear dependenceJc(u).(1
2u/uc)Jg , if one assumes thatJc(u) is determined by the
area of current channels in GB’s between the disloca
cores.4 However this linear dependenceJc(u) is much
weaker thanJc(u)}exp(2u/u0) with u0.4° –5°, which is
usually observed experimentally.1–7 Models have been pro
posed in which the current channels in GB’s are describe
an array of parallel point contacts32–34 which exhibit weak-
link behavior, if their width becomes smaller than the sup
conducting coherence lengthj,35 that is, d22r i,j, or u
,u1.b/@j(T)12r i #. At 77 K, the in-planej(T) is about
35 Å, whenceu1'5° for r i5b53.8 Å, which correlates
with the observed sharp decrease ofJc(u) above u
.3° –7°.1,7

The theoretical description of the observed depende
Jc(u) remains incomplete, not least because of a variety
relevant physical mechanisms and the multiscale heterog
ity of GB’s. The rapid decrease ofJc(u) is usually ascribed
to the strain-induced, or compositional suppression ofD near
dislocation cores and in the layer of thicknessl (u) near
GB’s.24–41 Then the array of parallel current channels
GB’s is regarded as an effective Josephson contact,
which

Jc}exp@2 l ~u!/jN~u!#, l @jN , ~1!

wherejN is the characteristic decay length which can be
proximity length for metallic GB’s or the tunneling lengt
for insulating GB’s.5 Thus, basically any increase ofl (u)
with the dislocation densityb/d.u or decrease ofjN due to
additional electron scattering on GB’s dislocations and co
positional variations near GB’s could account for the o
served rapid decrease ofJc(u) with u. However, this phe-
nomenological approach has several inconsistencies. F
Eq. ~1! can be used for a clean metallic GB, provided th
l .2jN.2j(0)Tc /T. This implies a fairly wide layer of sup
pressed order parameter near the GB (l .600 Å at 4.2 K!,
which would result in negligibleJc at 77 K. Yet, the weak-
link behavior of GB’s and strong decrease ofJc(u) have
been observed both at 4.2 and 77 K, withJc at 77 K exhib-
iting rather high values ;105 A/cm2 in thin film
YBa2Cu3O7 bicrystals.3,5–7Second, the strain fields of a sym
metric GB exponentially decay over the lengthl 5d/2p,22

which decreasesasu increases. To account for the increa
of l (u) with u, one has to assume nonperiodicity of the G
dislocation structure and distribution ofd,41 compositional
variations near GB’s, macroscopic strain fields produced
the GB facets,31 etc. The periodic long-range strains ne
low-angle GB’s can even locallyincrease Tc for smallu and
depressTc at largeru due to proximity effect coupling of the
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NC core regions.42 For the d-wave symmetry of the orde
parameter, faceting can also cause decreasingJc(u),10 but
this mechanism gives the relatively weak dependenceJc
}cos2 2u which is not sufficient to explain the observed dro
in Jc(u) by two to three orders of magnitude without th
assumption of the local depression ofD on the GB’s. The
gap suppression due to local nonstoichiometry near the G
is mostly determined by materials factors, such as diffus
of oxygen in remanent strain fields around GB’s which m
contribute to the significant scatter inJc(u) usually observed
on HTS bicrystals of the same misorientationu.5,7 However,
the nearly ‘‘universal’’ dependenceJc(u)}exp(2u/u0) ob-
served on many HTS’s~Refs. 5 and 6! seems to indicate a
fundamental intrinsic mechanism of the GB weak-link b
havior common for all HTS’s.

In this paper we propose a model which describes
observedJc(u), taking into account the GB dislocation stru
ture and the fact that a comparatively small shift of t
chemical potentialm near GB’s can strongly decreaseTc , or
even turn HTS’s into an insulating antiferromagnet.50 Be-
cause of the proximity of HTS’s to the metal-insulator tra
sition, the strains and excess ion charge of the GB dislo
tion structure can locally induce a dielectric phase n
dislocation cores and cause progressive overall suppres
of the superconducting order parameter withu in a narrow
layer of the order of the screening length near GB’s. T
model provides an intrinsic mechanism for the rapid d
crease ofJc(u) with u and describes well the observedJc(u)
dependence in HTS bicrystals, even without invoking t
local nonstoichiomentry and heterogeneity of GB’s. F
small u, the local suppression of superconductivity at GB
is shown to affectJc(u) much more strongly than the sym
metry of the order parameter which manifests itself at hig
u. We obtainJc(u) by solving the Ginzburg-Landau~GL!
equation which describes well the practically important te
perature rangeT.77 K for HTS’s.

The paper is organized as follows. In Sec. II we discu
mechanisms which determine the structure of the NC regi
and the gap suppression near GB’s. We first consider a s
mechanism which gives rise to a composite structure of
NC regions consisting of a dielectric core surrounded b
normal shell. The shape of the NC regions is strongly
fected by the in-plane anisotropy of the strain dependenc
Tc . Then we consider the electron screening of the exc
ion charge of GB’s which results in superconducting g
suppression near the GB’s amplified by the proximity
HTS’s to the metal-insulator transition, low carrier densi
and extended saddle point singularities near the Fermi
face. In Sec. III we propose a model described by the
equation which takes into account the current channel st
ture of a low-angle GB’s and the local gap suppression n
GB’s. This exactly solvable nonlinear model enabled us
obtain an analytical formula forJc(u) which gives a strong
~though nonexponential! decrease ofJc(u) with u. In Sec.
IV we compare the model with experiment and show that
theoreticalJc(u) dependence describes well the observ
Jc(u) in YBa2Cu3O7 and Bi-based HTS’s.

II. CURRENT CHANNELS IN GB’s

A. Strain mechanism

A qualitative description of NC regions can be made,
suming that the superconducting coupling constantl(r ) near
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the dislocation core becomes spatially inhomogeneous du
its dependence on the local strain tensore ik . The suppres-
sion of D near the cores can be quantified in terms of
tensorCik which determines the shift ofTc in a weakly de-
formed superconductor:

Tc5Tc02Cike ik . ~2!

The strain dependence ofTc in HTS’s can be highly
anisotropic.43–47 For instance, for optimally doped
YBa2Cu3O7 single crystals, it was found thatdTc /dpa5
2(1.9–2) K/GPa,dTc /dpb51.9–2.2 K/GPa, anddTc /dpc
52(0 –0.3) K/GPa,45 where pi is the stress along thei th
axes. The hydrostatic pressure derivativedTc /dp
5( idTc /dpi yields a comparatively small valuedTc /dp
.0.3 K/GPa which results from a cancellation of large,
most equal, and opposite in-plane effects of different sig
This is usually ascribed to the influence of Cu-O chai
orthorhombic distortions of the Cu-O planes, charge tran
effects, etc.43–46 By contrast, Bi2Sr2CaCu2Ox exhibits nearly
isotropic in-plane pressure derivativesdTc /dpa.1.6 K/GPa,
dTc /dpb.2 K/GPa, but large negativedTc /dpc.22.8 K/
GPa along thec axis, so thatdTc /dp5( idTc /dpi again
largely cancels under hydrostatic pressure. Doping can
stantially affectdTc /dpi ; for example, thedTc /dpi values
for underdoped YBa2Cu3O7 with Tc'40 K are about 2–10
times larger than those for the optimally dop
YBa2Cu3O7.

48

For planar deformations, Eq.~2! becomes

dTc52C@e1p~exx2eyy!cos 2w12pexysgn~x!sin 2w#,
~3!

where p5(Ca2Cb)/(Ca1Cb), e5exx1eyy , C5(Ca
1Cb)/2, andw is the angle between thex axis taken along
the normal to the GB’s and thea axis in Fig. 1. The con-
stantsCa52]Tc /]eaa and Cb52]Tc /]ebb determine the
change ofTc under uniaxial compression (e i,0); for ex-
ample,Ca52217 K andCb5316 K for optimally doped
YBa2Cu3O72d single crystals.47 For Ca5Cb , which corre-
sponds to the nearly isotropic in-plane dependenceTc(e ik)
found in Bi2Sr2CaCu2Ox ~Bi-2212!, Eq. ~3! reduces todTc
52Ce. Assuming isotropic elastic constants in theab
plane,49 the shape of the NC region for a single edge dis
cation can be evaluated from the conditionTc(r )50, using
Eq. ~3! with w50 ande ik from Appendix A. For the dislo-
cation at x5y50, the boundary of the NC region is de
scribed by

r ~f!52r 0 sin f~11p0 cos2 f!, ~4!

r 05
bC~122s!

4pTc0~12s!
, p05

Ca2Cb

~122s!~Ca1Cb!
, ~5!

wheres is the Poisson ratio andf is the polar angle. For the
isotropic strain dependence ofTc , Eq. ~4! describes a circle
of radiusr 0 centered atx50,y52r 0 @Fig. 2~a!#. For aniso-
tropic Tc(e ik) with up0u@1, the characteristic size of the N
region becomesr 15r 0up0u, and its shape changes as sho
in Figs. 2~b! and 2~c!.

Figure 2 shows the NC regions in a grain boundary c
culated from the conditionTc(r )50, whereTc is given by
Eq. ~3!, 2w5p2u, and e ik for the periodic chain of GB
dislocations is taken from Appendix A. For isotropicTc(e ik),
to

e

-
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,

er
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-

l-
FIG. 2. Nonsuperconducting core regions in a symmetric

calculated from Eq.~3! for u515° and s50.28. ~a! shows the
isotropic casep50 for C/Tc0520. ~b! and~c! show the NC regions
for the anisotropic case:C/Tc0510, p55.3 ~b! andC/Tc0510, p
525.3 ~c!.
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57 13 881CURRENT TRANSPORT THROUGH LOW-ANGLE GRAIN . . .
the NC regions shrink and flatten along GB’s asu increases,
but they do not touch for anyd. The latter is due to partia
compensation of the dipole strain fields of GB dislocatio
resulting in the exponential decay ofe ik}exp(22puxu/d)
away from GB’s. For anisotropicTc(e ik), the NC regions do
not overlap as well, though their shape depends on the
of p and can significantly differ from the isotropic case. A
an illustration, Figs. 2~b! and 2~c! show NC regions for typi-
cal YBa2Cu3O72d valuesp565.3, where the plus sign cor
responds to the case shown in Fig. 1, and the minus
corresponds to the transposition of thea andb axes. For the
anisotropic strain dependence ofTc , the current-carrying
cross section of GB’s can be strongly reduced by o
diagonal components ofe ik . This may contribute to the
weak-link behavior of@001# tilt GB’s in the basal plane of
YBa2Cu3O72d .

The above description, based on the linear strain dep
dence~2!, can be used for NC regions much larger thanb.
This impliesC@Tc0 in Eq. ~5!, which corresponds to under
doped HTS,43–46 or significant local nonstoichiometry nea
GB’s. However, for optimally doped HTS’s (s50.28, C
.300 K, andTc0.100 K!, Eq. ~4! yields a fairly small
diameter of the NC region, 2r 0.0.3b.1 Å. This indicates
that the linear approximation~2! of Tc(e ik) is not self-
consistent, since the elastic strainse i j }b/2pr 0 near the dis-
location cores become so strong that the linear expansion~3!
of Tc in e i j is hardly adequate. Thus, we have to take acco
of the actual nonlinear dependence ofTc on e i j shown in Fig.
3 with a characteristic maximum at the optimum strainem ,
which reflects the nonmonotonic dependence ofTc of HTS’s
on the hole concentrationc on the Cu-O planes.50,52 In the
absence of structural transitions,Tc(e) may be approximated
by a conventional parabolic function, which describes w
the observed dependence ofTc on hydrostatic pressurep in
HTS’s.43–46The general quadratic dependenceTc(e i j ) in an-
isotropic HTS’s can be written in the formTc5Tc02Ci j e i j
2Qi jkl e i j ekl , where the tensorQi jkl is symmetric with re-
spect to the transpositioni↔ j and k↔ l , and the principal
values Ca , Cb , and Cc of Ci j determine the observe
dTc /de i for e i j→0. For orthorhombic symmetry,Qi jkl has
nine independent components,23 but for planar deformations
Qi jkl has four independent components; so

FIG. 3. Phase diagramT(c) of high-Tc superconductors~a!,
where I, N, and S correspond to the insulating, normal, and su
conducting states, respectively.~b! shows~a! replotted in theT-e
coordinates.
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Tc5Tc02Caeaa2Cbebb2Qaeaa
2 2Qbebb

2 2Q1eaaebb

2Q2eab
2 . ~6!

The simplest version of Eq.~6! with Ca5Cb , Qa5Qb
5Q1/2, andQ250 corresponds to a purely isotropicTc(e)
which depends only on the dilatatione,

Tc5Tc02Ce2~Ce!2/4DTm . ~7!

Here DTm5Tcm2Tc0, and the coefficients in Eq.~7! are
chosen such that the maximum value ofTc equalsTcm at
em522DTm /C, and dTc /de gives the observedC at e
→0. The pressure experiments have shown thatDTm!Tc0,
at least for optimally doped HTS’s.43–46 In this caseTc(e)
vanishes at comparatively weak straine i.A2DTmTc0/C
!1, for which the linear elasticity theory is still applicabl
sinceC.Tc0.

Now we can estimate the size of the NC region for t
nonlinearTc(e). For the isotropicTc(e), the conditionTc
50 yields a quadratic equation for e5b(1
22s)sinf/2p(12s)r . Its solution gives two circular NC
regions described by Eqs.~4! and ~5! with p050 and r 0

replaced byr i
6 ~Fig. 4!. The radiir i

6 are

r i
65

r 0

2
~A11a061!, ~8!

where a05Tc0 /DTm . For DTm!Tc , the nonlinearity of
Tc(e) increasesr i by the factor (Tc/4DTm)1/2 as compared to
r 0. For optimally doped Bi-2212,s50.28, C.300 K, Tc0

.100 K, andDTm54 K; we obtain from Eq.~8! that 2r i
1

'b. The local nonstoichiometry near the Cu-rich dislocati
cores24 may considerably increase the ratioC/Tc0 in Eq. ~8!,
thus further increasingr i .

For the anisotropicTc(e ik) dependence~6!, the solution
of the quadratic equationTc@e ik„r (f)…#50 for r (f) yields

r-

FIG. 4. Composite structure of the nonsuperconducting core
gions in a GB for the isotropic case calculated from Eq.~7! for u
515°, T577 K, DTm51 K, C5300 K, Tc0590 K, ands50.28.
The inner region~I! is in an insulating state surrounded by th
normal regions.
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13 882 57A. GUREVICH AND E. A. PASHITSKII
r ~f!5r 0 sin f@A~112p0 cos2 f!21g~f!

6~112p0 cos2 f!#, ~9!

g~f!5g01g1~cos2 f2s sin2 f!

1g2@~122s!224 cos2 f#1g3ctg2f cos2 f,

~10!

whereg054QTc0 /C2, g154(Qa2Qb)Tc0 /(122s)C2, g2
5(Q122Q)Tc0/4(122s)2C2, g35Q2Tc0/4(122s)2C2,
and Q5(Qa1Qb)/2. For the isotropic case
b05g15g25g350, Q5C2/4DTm , Eq. ~9! reduces to Eq.
~8!. Unlike the isotropic case, the shape ofr (f) for the an-
isotropic case can be changed by the nonlinear terms in
~6!. We do not discuss here the anisotropic case in m
detail because of a lack of experimental data onQi for
YBa2Cu3O7.

The structure of the NC regions may be further clarifi
by the phase diagram of HTS’sTc(c), shown in Fig. 3. In-
deed, using the electroneutrality condition, the isotro
strain dependence ofTc(e) can be qualitatively mapped ont
the domelike dependence ofTc(c) on the hole concentration
c, if e(r ) varies weakly on microscopic scales, such as
screening length~see below! and j. Figure 3 clearly shows
that the slopeC5dTc /de increases asTc decreases, giving
the observed strong sensitivity of the ratioC/Tc0 to the local
doping level.43–46,51Under these assumptions, we can rep
the phase diagram inT-e coordinates as shown in Fig. 3~b!
and conclude that forT50 the NC regions are partly in a
insulating ~I! state,5,24 since the pointTc50 is close to the
region of the HTS phase diagram which corresponds to
insulating antiferromagnet. Recent measurements of resi
ity r(T) of La22xSrxCuO4 in high pulsed magnetic fields52

revealed an insulating behavior ofr(T) even in the super-
conducting region of the phase diagram after suppressio
the order parameter by a magnetic field. Therefore,
strains might cause the local S-I transition near the dislo
tion cores in larger domains determined byTc(e)5Ti ,
whereTi corresponds to the intersection of the supercond
ing and insulating regions on the phase diagram in Fig
The nonzeroTi can be taken into account by replacingTc0
with Tc02Ti in Eq. ~8!. Notice that Winkleret al.53 reported
on a significant dielectric fraction in GB’s for a 32°@001# tilt
YBa2Cu3O7 bicrystal which manifests itself in Fiske reso
nances onI -V characteristics. A largeTc depression was als
observed on a 7° Bi-2212 tilt bicrystals.54

The NC regions therefore have a composite structure c
sisting of insulating and normal domains, whose bounda
are defined by the conditionsTc(e).Ti and Tc(e).T, as
shown in Fig. 4. For a single dislocation, the dielectric d
main is a circle of radiusr i

1 centered atx50, y52r i
1 ~as

seen from Fig. 3, the second solutionr i
2 for underdoped

HTS’s corresponds to a normal domain!. The outer shape o
the normal domain is two circles which touch atx5y50,
their radii r n

6 being described by Eqs.~4! and ~8! in which
Tc0 should be replaced byTc02T:

r n
65

r 0

2t
~A11a0t61!, ~11!
q.
re

c

e

t

n
iv-

of
e

a-

t-
.

n-
s

-

wheret5(Tc02T)/Tc0. The size of the normal NC region
along GB’s, Ln52(r n

11r n
2)52r 0(11a0t)1/2/t, increases

with temperature. For optimally doped Bi-2212,43–46 we
haveTc0.100 K, DTm.1 –2 K, a05Tc0 /DTm545–90,T
577 K, andt51/7; we obtainLn.(100–140)r 0'50–70 Å.
As above,Ln(T) may increase due to the local nonstoich
ometry near GB’s.

Using Eq. ~11!, we can estimate the critical angleun
52 sin21(b/2Ln), above which the normal parts of the N
core regions of neighboring dislocations start overlapping

un52 sin21
p~12s!~Tc02T!

C~122s!A11a0t
. ~12!

For 77 K and the numbers used above, this yie
un(77 K).3° –5°, in agreement with the observed onset
the sharp drop inJc(u).1–7 By contrast, the dielectric parts o
the NC core regions may start overlapping at a much hig
angleuc thanun . Using Eq.~8!, we can estimate the critica
angleuc52 sin21 (b/4r i

1) as follows:

uc52 sin21
2p~12s!Tc0

C~122s!~11A11a0!
. ~13!

For C.300 K,Tc0.90 K, andDT.1 –2 K, we obtain from
Eq. ~13! that uc.30°–40°.

B. Electron screening in GB’s

The strain decay lengthd/2p.b/2pu becomes smaller
thanb'4 Å at comparatively small anglesu.9°, for which
additional mechanisms can contribute to the suppressio
superconductivity near GB’s. We consider here a local red
tribution of the carrier densityn(x,y) and the shift of the
chemical potentialm at the GB’s which both strongly affec
Tc in HTS’s. If e(x,y) varies over scales shorter than th
Debye screening lengthl D5@k`/4pe2N(EF)#1/2, the local
electroneutrality assumed in the previous section beco
invalid. Here k`.20–30 is the dielectric constant of th
ionic lattice of HTS’s,58 N(EF) is the density of states on th
Fermi surface, and2e is the electron charge. Unlike low-Tc
superconductors, HTS’s havel D comparable to the coher
ence lengthj0,55,56 and so the charge effects are essentia
the width of current channels in GB’s becomes smaller th
2l D .

For an ideal electron gas in layered materials, the in-pl
screening lengthl D is independent of the electron density,57

with l D5(k`srB)1/2/2 for s!k`r B and l D5k`r B/2 for s
@k`r B . Here r B5\2/me2 is the Bohr radius,m is the in-
plane effective mass, ands is the interlayer spacing. Fo
HTS’s, the characteristic values ofl D55 –10 Å ~Ref. 56!
become larger than the strain decay lengthb/2pu for u
.4° –7°. For higheru, the sizes of the NC core regions a
smaller than the thickness 2l D of the space charge layer ne
GB’s; and thus the suppression ofD on GB’s is mostly due
to the electrostatic potentialF(x) near GB’s.

We describe screening around the GB dislocations in
normal state,63 using the Thomas-Fermi equation

¹2F2F/ l D
2 524pZedN~x,y!/k` , ~14!
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whereZe is the ion charge anddN(x,y) is the perturbation
of the total ion densityN0 caused by the GB strains. Notic
that for a two-dimensional~2D! ideal electron gas, the non
linear corrections to Eq.~14! are absent.57

The atomic structure of the GB’s in layered HTS’s can
very complicated, since it depends not only onu, but also on
the way the different ions in adjacent crystalline lattices
matched on GB’s.29 However, the important qualitative fea
ture of the GB structure is that it has an excess ion chargQ
which is screened by electrons~holes!. We calculateQ for
low-angle GB’s, for which we can use the continuous el
ticity theory for the GB dislocations, and thus express
excess ion density at the GB’s in terms of measured ma
scopic parameters. To do so, we consider the simplest
tropic expansion ofdN(x,y) in elasticstraine(x,y),

dN52N0~e1ze2!. ~15!

Here the linear term ine describes the periodic ion densi
variation in elasticity theory which gives zero charge af
averaging along GB’s. The quadratic term describes the
anharmonic correction, wherez is the Grüneisen paramete
which determines the thermal expansivity and is usua
about 2 above 20–30 K.59,60Although small, as compared t
the linear term in Eq.~15!, the quadratic term is importan
since it has a nonzero mean valueQ52N0Zez*^e2&dx
which gives the excess ion charge per unit area of GB’s
to reduced ion density in the layer of thicknessd/2p near
GB’s:

Q52zeZN0E
2`

`

(
G

ue~k,G!u2
dk

2p

52
zZeN0~122s!2b2

16pd~12s!2
ln

d

r i
, ~16!

where the Fourier componente(k,G) was taken from Ap-
pendix B. The total ion chargeQ(u) increases approximatel
linear with the GB dislocation density,b/d}sin(u/2). The
nonzeroQ results in a uniform shift of the meanF(x) which
decays across GB’s on the screening lengthl D which is
larger thand/2p in the crucial region of intermediateu.

It is convenient to writeF asF5F11F2, whereF1 and
F2 are determined by the linear and quadratic terms
dN(e), respectively. The solution of Eq.~14! for F1(x,y)
obtained in Appendix B has the form

F1~x,y!5Fa (
G.0

@e2uxuG2Ge2uxuG0/G0#sin Gy, ~17!

where Fa522pN0Zeb(122s) l D
2 /d(12s)k` , G

52pn/d, G05(G21 l D
22)1/2, and n50,61,62, . . . . Here

F1(x,y) oscillates along GB’s and exponentially deca
across GB’s on the lengthsd/2pn. Therefore, the screenin
effects in the first order ine only renormalize the size of th
NC regions calculated in the previous section, since the fl
tuation of the carrier concentration dn(x,y)5
2F1(x,y)/4p l D

2 e varies on the same spatial scales as
lattice strainse(x,y).

The oscillations ofdn(x,y), along GB’s also result in a
uniform suppression of the localTc near GB’s. For the para
e

-
e
o-
o-

r
st

y

e

n

c-

e

bolic dependenceTc5Tcm2A(n2nm)2, the uniform shift of
the critical temperaturedTc(x)5Tc(x)2Tc0 along GB’s is
given by dTc52A^F1/4p l D

2 e&2, where^ & stands for spa-
tial averaging overy. In GL theory the suppression ofD near
GB’s is determined by the dimensionless parameterG15
2*dTc(x)dx/j0Tc0 ~see below! which can be obtained from
Eq. ~17! in the form

G15
AFa

2

2Tc0j0
(

G.0

~21g!A11g1g222g22

G~11g!3/2~11A11g!
, ~18!

whereg5( l DG)22. For u.b/2p l D , that is,g!1, the ex-
pression under the sum in Eq.~18! reduces to 5/8l D

4 G5. Since
Fa in Eq. ~18! is proportional to 1/d, the parameterG1}d3

}1/u3 rapidly decreases withu. Therefore, the first linear
term in Eq.~15! due to elastic strains cannot give rise to a
progressive depression ofD on GB’s with u.

By contrast, the anharmonic contributionF2(x,y) con-
tains a nonoscillating term which decays overl D across GB’s
and describes a shift of the mean electrostatic poten
F(x)5^F2(x,y)& due to the excess ion charge on GB’s. A
shown in Appendix B,F(x) is given by

F~x!52Fl D
2 (

G.0

Gm 2GlDe2uxu/ l D2e22uxuG

~2l DG!221
, ~19!

where F5peZN0zb2(122s)2/2d2(12s)2k` . Since the
sum~19! diverges logarithmically at largeG, we introduced
a cutoff Gm;2p/r i determined by the sizer i of the dielec-
tric core region, where Eq.~14! becomes invalid. Foru
.b/2p l D , the second term in the numerator of Eq.~19! can
be neglected, andF(x) takes the form

F~x!5F0exp~2uxu/ l D!, ~20!

whereF0 to logarithmic accuracy is given by

F0.2
eZN0zb~122s!2l Dln~d/r i !

4~12s!2k`

sin
u

2
. ~21!

The amplitudeF0 increases approximately linear withu for
u!1. Taking for YBa2Cu3O7,

56,62 s50.25, ZN05n055
31021 cm23, and k`520, we obtaineF0;6 meV for d
54b54r i , u520°, l D58 Å, z52.

The 2D isotropic equation~14! gives the simplest self-
consistent description of charge effects near GB’s, altho
it does not take into account all characteristic features of
electron band structure of HTS’s and nonlocal electr
screening. The nonlocality increases the effective screen
length for charge fluctuations with the wave vectork com-
parable to the 2D Fermi wave vectorkF.(2pn0s)1/2.57 Due
to the low carrier densityn0, the conditionk;2p/d;kF is
characteristic of GB’s in HTS’s, resulting in the effectiv
screening lengthl D which can substantially exceed it
Thomas-Fermi value. Thus, the electric potentialF(x) near
GB’s becomes more long range, varying on lengths of
order of the mean spacing between carriers;n0

21/3 which is
about 6 Å for optimally doped YBa2Cu3O7 (n0.5
31022 cm23). We do not consider here the more comp
cated nonlocal screening near GB’s, restricting ourselves
qualitative description in the framework of the Thoma
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13 884 57A. GUREVICH AND E. A. PASHITSKII
Fermi approach with an effectivel D extracted from observed
strong electric field effects in HTS’s which indicate thatl D
.5 –10 Å.56

The nonlocality also makesF(x) dependent on details o
the electron band structure of HTS’s, such as the exten
saddle point singularities near the Fermi level and pla
portions on the Fermi surface along the@100# and @010# di-
rections in the Brillouin zone.64–67 For s@k`r B , the
screened potentialF(x,y) is long range57 (F}1/r 3) and also
exhibits Friedel’s oscillations,63,59

F~x!}
c0 cosQx

uxu
e2uxu/j1, Quxu.1, ~22!

along thea or b axes. HereQ is the nesting wave vecto
between the neighboring planar portions of the Fermi s
face, which isQ'0.3 Å21 for optimally doped HTS’s.64–66

This gives the period of the oscillations,l f52p/Q.20 Å.
The factor exp(2uxu/j1) accounts for the damping of the Frie
del oscillations in the superconducting state, wherej1(T)
weakly depends on temperature and approximately eq
the superconducting coherence lengthj(0) at T50.68,69 Im-
purities do not affect the Friedel oscillations, if the electr
mean free pathl i is much larger thanj0. The casel i.j0 is
characteristic of HTS materials which usually correspond
the clean limit j0! l i . Therefore, the lengthl D;j1
.10–15 Å can be regarded as an intrinsic effective thi
ness over which the order parameter is depressed nea
GB’s.

C. Heterogeneity scales of theTc suppression on GB’s

Now we consider how the heterogeneity of the GB’s c
affect superconducting properties. The NC regions, spa
by d, consist of an insulating domain of size 2r i surrounded
by metallic shell in which thelocal superconducting cou
pling constantl is suppressed on the scale of a few atom
spacings. BelowTc , these small metallic core regions (r 1

,j) become superconducting due to the proximity eff
and therefore transparent to the transport current. Howe
the dielectric core regions are not affected by the proxim
effect and remain stronger barriers for the current flow. F
the ideal GB’s shown in Fig. 1, the sizer i calculated above
in the linear elasticity theory decreases withu due to the
compensation of strain fields in GB’s asd decreases~see
Appendix A!. However, if r i(u) becomes comparable wit
b, the decrease ofr i is limited by plastic effects near dislo
cation cores.22,72 The local suppression ofD on GB’s due to
the NC regions is determined by the parameter42

G1;
Ln

2

dj0
}sin

u

2
, ~23!

which is a fraction occupied by the normal NC regions in t
layer of thicknessj0 near GB’s. These normal regions giv
rise to the proximity effect suppression ofD linear in the GB
dislocation density.

For u.b/2p l D , the NC regions become smaller than th
screening lengthl D ; thus the superconductivity suppressi
on GB’s is mostly due to the shiftF0 of the averaged elec
trical potential on GB’s. This results in the opposite shift
the chemical potentialm by m052eF0 to provide a con-
ed
r

r-
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o

-
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c

t
er,
y
r

f

stant electrochemical potentialme5m1eF. However,Tc of
HTS’s is generally quite sensitive to small shifts ofm, since
comparatively small changes of the in-plane hole concen
tion c can cause the transition into an insulatin
antiferromagnet50 ~see Fig. 3!. Due to the small Fermi energ
in HTS’s, EF;0.1 eV, the above-estimated shift ofm on
GB’s by eF;5 –10 meV;Tc appears to be of the order o
the change ofm which can cause strong local suppression
D.50,67,70,71

These qualitative estimates indicate that the charge eff
can provide a universal mechanism of the local supercond
tivity suppression on GB’s. This mechanism is amplified
the extended saddle point singularities in the HTS elect
density of statesN(E) observed in photoemission exper
ments at energiesE52m1'20–30 meV below the Ferm
level.64–67 The resulting singularity inN(E) near the Fermi
surface not only can enhance the bulkTc ,70,71 but also can
makeTc sensitive to any shifts ofm of orderm1. SinceeF0
on GB’s turns out to be comparable to them1, the shift of the
peak inN(E) away from its presumably optimum position
m1 can further suppressD in the layer of thickness 2l D
around GB’s, as shown in Fig. 5.

We estimate the suppression ofD(x) due to the local
variations ofF(x) in GL theory which has been used t
describeD(x,y) near various structure defects for boths-
andd-wave symmetries of the order parameter74 and in the
presence of extended saddle point singularities.71 We illus-
trate here the essential physics by the simplests-wave GL
equation, sinceJc(u) calculated below turns out to be onl
weakly sensitive to the symmetry ofD in the region of smallu.
The GL equation with a locally nonuniform superconducti
coupling constantl(r ) has the form73

j0
2¹2D1F ln

Tc~r !

T
2

D2

D0
2GD50. ~24!

Here j0 and D0 are of the order of the zero-temperatu
coherence lengthj(T)5j0 /At and the gapD(T)5AtD0,
respectively, andt5(Tc02T)/Tc0!1 near the bulkTc0.
The valuej05(f0/2pHc28 Tc)

1/2 can be extracted from the
observed temperature derivative of the upper critical fi
Hc28 at Tc , giving j0'13 Å for YBa2Cu3O7 (Tc590 K,
Hc28 '2 T/K!. Taking the BSC-type dependenceTc

FIG. 5. Suppression of the order parameter near GB’s due to
variation of the chemical potential in the layer of thickness 2l D

,j(T). The dashed curve depicts the energy of the extended sa
point singularity inN(E).
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5v0exp(21/l) and assuming thatTc is mostly determined
by the local depression ofl near GB’s, we can rewrite Eq
~24! in the form

j0
2¹2D1F t2

D2

D0
2GD5F 1

l~r !
2

1

l`
GD, ~25!

where l` is the coupling constant away from GB’s. Th
right-hand side of Eq.~25! describes the localized perturb
tion V(r )D due to the suppression ofl(F) near GB’s. As-
suming a smooth dependence ofl on m, we get V(x)5
2eF(x)(]l` /]m)/l`

2 , if eF0(u) is smaller than the criti-
cal shift of the chemical potentialmc which causes the
superconductor-insulator transition. SinceF0 on GB’s in-
creases with the dislocation density, this mechanism p
vides the progressive decrease ofD on GB’s with u, which,
in turn, gives rise to the rapid decrease ofJc(u) considered
in the next section. The angular dependenceJc(u) is thus
determined by the domelike dependencel(m) characteristic
of HTS’s.

Therefore, besides the spacing between the GB dislo
tions, there are two additional intrinsic length scales ass
ated with GB’s. The first one is the sizer i.b of the insulat-
ing core regions which provide strong barriers for curre
flow. The second scale is the width 2l D of a layer of sup-
pressedD across GB’s which is determined by the char
effects.

III. CRITICAL CURRENT

Now we calculateJc for a uniform current flowing per-
pendicular to GB’s, by solving the GL equation

j2¹2c1c2c32
i 2

c3
5V~c,r !, ~26!

wherec5D/Db is the order parameter normalized to its bu
valueDb5D0At, i 5J/J0 is the dimensionless transport cu
rent density away from GB’s,J05cf0/16p2lL

2j is of the
order of the depairing current density, andlL(T)5lL0 /At
is the London penetration depth.

The left-hand side of Eq.~26! is the usual GL equation in
the presence of uniform current,73 and the right-hand side
describes the perturbation caused by GB’s,

V5
1

t F 1

l~r !
2

1

l`
Gc1

i 0
2~r !2 i 2

tc3
, ~27!

where i 0(r ) is the normalized current density near GB
where bothi 0(r ) andl(r ) are strongly inhomogeneous du
to the local Tc suppression and the channel structure
GB’s. The first term on the right-hand side of Eq.~27! de-
scribes the localTc suppression across the GB’s and t
modulation ofD(x,y) along GB’s caused by the NC region
The second term in Eq.~27! results from the decrease of th
GB current-carrying cross section by the insulating parts
the NC regions. This gives rise to a local concentration
j (x,y) in the current channels, which further depressesD.

Equation~26! describes the distribution ofD(x,y) for the
proximity coupled NC regions. The general case ofd
.j(T) is very complicated; however, the situation simplifi
o-

a-
i-

t

f

f
f

if the effective GB thicknessl 052l D and the dislocation
spacingd are much smaller thanj(T) @which corresponds to
u.b/j(T);5° for YBa2Cu3O7 at 77 K#. In this case the
particular shape of the NC regions becomes less essen
becauseD(x,y) is mostly determined byV(x,y) averaged
along GB’s.42 Sincel D!j(T) nearTc , the localized poten-
tial V(x,y) can be written as

V5V0d~x!, V05E
2`

`

^V~x,y!&dx, ~28!

where^•••& stands for the spatial averaging along GB’s, a
d(x) is the delta function. It is convenient to rewrite Eq.~26!
in the following dimensionless form:

c91c2c32 i 2/c32G~c,i !d~h!50, ~29!

where the prime denotes differentiation with respect toh
5x/j(T) andG(c,i )5V0(c,i )/j(T). Equation~29! can be
solved exactly for any dependenceG(c).75 The solution
c(h) obtained in Appendix C has the form

c2~h!5cm
2 1~c`

2 2cm
2 !tanh2F ~ uhu1h0!Ac`

2 2cm
2

A2
G .

~30!

Herec` andcm are given by

i 25c`
4 ~12c`

2 !, cm
2 52i 2/c`

4 . ~31!

The first equation in Eq.~31! describes the suppression ofc
by uniform current,73 and h0 is defined byc(0)5c0. The
order parameterc0 on GB’s satisfies the following equation

2E2c0
21

c0
4

2
2

i 2

c0
2

5
G2~c0!

4
, ~32!

where E5c`
2 23c`

4 /4. For i 50, Eqs.~27!, ~31!, and ~32!
yield G(c)5G1c, c`51, cm50, and

h05A2 tanh21SA11
G1

2

8
2

G1

2A2
D . ~33!

The distributionc(x) described by Eqs.~30! and ~33! is
shown in Fig. 6, wherec0512G1/2A2 at G1!1, andc0

5A2/G1 for G1@1.
For a qualitative analysis ofc(x,i ) at i .0, it is conve-

nient to use an analogy of Eq.~29! with the equation that
describes the classical motion of a particle of the unit m
and energyE in the potential

U~c!5
c2

2
2

c4

4
1

i 2

2c2
, ~34!

wherec and h play the role of the particle coordinate an
time, respectively. The termG(c) in Eq. ~29! describes an
elastic reflection of the particle atc5c0. We seek a sym-
metric trajectoryc(h) of the particle which starts moving
from pointb with an infinitesimal velocity andc5c` , then
gets reflected atc5c0, and comes back tob with zero ve-
locity. The graphic solution of Eq.~32! for c0 is shown in
Fig. 7, wherec0 corresponds to the intersection points of t
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curves2G2(c)/4 andU(c)2E. As seen from Fig. 7, Eq
~32! has several roots, of which only those withdc0 /di
,0 are stable.75 The only stable solutions in Fig. 7 disap-
pears ati . i c , wherei c determines the critical current den
sity through GB’s which is basically the depairing curre
density for the self-consistent distribution~30!.

Now we considerG(c) which follows from Eq.~27!:

G~c!5G1c1G2i 2/c3. ~35!

The parameterG1, which describes the local suppression
Tc on GB’s, increases withu due to the domelike depen
dence of the superconducting coupling constantl@m
1eF(u)# in HTS’s on the chemical potential. We do n
discuss here specific dependencesl(m) for various micro-
scopic models published in the literature, focusing instead
a phenomenological description ofJc(u) which can be ob-
tained by expandingl.l`1(]l` /]m)eF0 in Eq. ~27! for
smalleF0. This givesG1 which increases approximately lin
early with the GB dislocation density:

G15
2l DeFm

l`mcj0At
sin

u

2
. ~36!

Here mc5u] lnl` /]mu21 is of the order of the shift ofm
which causes the S-I transition, and the amplitudeFm is
defined byuF0(u)u5Fmsin(u/2), whereF0(u) is given by
Eq. ~21!. The nonlinearity of the functionTc(m) could be
taken into account by assuming the conventional parab
dependenceTc(x)5Tc0@12a1F(x)2a2F2(x)# in Eq. ~24!,
wherea1,2 are constants. This results in a nonlinear and fa
cumbersome dependence ofG1}* ln(Tc /Tc0)dxon sinu which
we do not consider here, since the much simpler Eq.~36!
based on the linear expansion ofl(m) already provides a
good description of the observedJc(u) ~see below!.

The parameterG2 in Eq. ~35! accounts for the decrease
the current-carrying cross section of GB’s by the insulat
NC regions. In this case the local current density is enhan
in the superconducting channels between the disloca

FIG. 6. Distributionc(h) near GB’s described by Eqs.~30! and
~33! for i 50 andG1510. The coordinatex is normalized byj(T).
t

f

n

ic

y

g
ed
n

cores and in the layer of thickness.4r i around GB’s, where
r i is an effective radius of the NC regions. ThenG2 can be
written in the form

G25
4r i

j0At
F d2

~d22r i !
2

21G5
4r in~22n!

j0At~12n!2
. ~37!

Here the termd2/(d22r i)
2 describes the local enhanceme

of i 2 in the current channels, and

n5
sin~u/2!

sin~uc/2!
, ~38!

whereuc is the critical angle,uc52 sin21(b/4r i) at which the
insulating NC regions overlap.

For arbitraryG1, G2, the critical currenti c is determined
by two cumbersome algebraic equations forc0( i ) and i c . A
simpler caseG250, G1.0 corresponds to a uniform Jo
sephson contact with suppressed order parameter, for w
Jc is determined by a single algebraic equation given in A
pendix C @numerical simulation of Eqs.~29! and ~35! for

FIG. 7. Graphic solution of Eq.~32! for J,Jc ~a! andJ5Jc ~b!.
The particle of energyE moves in the potentialU(c), reflecting in
the intersection points ofU(c)2E ~solid curve! and 2G2(c)/4
~dashed curve!.
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G250 was performed by Campbell36#. Hereafter we focus on
the most interesting caseG1@1, G2.0, for which a GB
exhibits weak-link behavior. As follows from Eq.~36!, the
condition G1@1 does hold, since 2l D.j0, t!1 and
eF0 /l`mc.1 for weak coupling. IfG1@1, theni 2!1, and
so we can putc`

2 512 i 2 and tanh2(h0 /A2)5c0
222i 2 in

Eqs. ~30! and ~31!. In this case Eq.~32! reduces to~see
Appendix C!:

u422u312qu21a2q250, ~39!

a5
G1G2

21G1G2
, q5~21G1G2!G1

2i 2, ~40!

whereu5c0
2. A graphic analysis of Eq.~39! similar to that

in Fig. 7 shows that the stable solutionus(q) exists only
below the critical valueq,qc which determinesJc . At q
5qc pointss andu in Fig. 7 merge atu5uc , and the stable
solution disappears, ifq.qc . The valueuc can be found by
differentiating Eq. ~39! with respect to u, giving qc
5uc(3/22uc). Substituting thisqc into Eq.~39! and solving
a quadratic equation foruc(a), we calculateqc5uc(3/2
2uc) and finally obtainJc in the following scaling form:

Jc5
Jm

n F129a21~113a2!3/2

~11a!~12a2!
G 1/2

, ~41!

Jm5
J0bAt

2A2bj0sin~uc/2!
, ~42!

a5
bn2~22n!

2t~12n!21bn2~22n!
. ~43!

Here the dependence ofa on n andt was found, using Eqs
~36!, ~37!, and ~40!. The control parameter b
52l DbeFm /j0

2mcl` , which determines how fastJc(u) de-
creases withu, can be obtained from Eq.~21!:

b5
e2n0z ln~b/r iu!

2k`mcl`
FblD~122s!

j0~12s! G2

. ~44!

Notice that forG1@1, the parameterG2 enters Eq.~41! only
in the combinationG1G2, and so even a weak blockage
current by the NC core regions (G2!1) can markedly sup-
pressJc , if G1G2.1. ForG1G2@1, Eq. ~41! yields

Jc5
3A3J0

8G1AG1G2

5J1

t5/2~12n!

n2~22n!1/2
, ~45!

J15
3A3bJ0~0!

8b3/2j0 sin~uc/2!
, ~46!

where J0(T)5J0(0)t3/2. The suppression ofJc due to the
current channels manifests itself in the additional fac
AG1G2.1 in Eq. ~45!, as compared toJc;J0 /G1 for G2
50 andG1@1 ~see Appendix C!. Equation~45! corresponds
to the GL temperature regionT.Tc in which Jc}t5/2 rapidly
decreases withT and u. The temperature dependence~45!
differs from theJc}t for S-I-S Josephson contacts and
rather consistent with the observed quadra
r

c

dependence,5,76,77 Jc}t2 characteristic of S-N-S contacts.78

In this model which neglects the Josephson tunnel
through insulating dislocation cores,Jc(u) vanishes atu
5uc . When taking into account the tunneling through t
insulating NC regions atu.uc , the critical current remains
finite, though its angular dependenceJc(u) might change as
compared tou,uc .

IV. COMPARISON WITH EXPERIMENT
AND DISCUSSION

Equation~41!, which gives the explicit dependence ofJc
onu andT, contains three control parametersb, uc , andJm .
When comparing the calculatedJc(u,T) with experiment,
the amplitudeJm can be eliminated by normalizingJc(u) to
its value Jc(u0) for a certain misorientation angleu0
.3° –5° at whichJc(u0) equalsJg in the grains. Smallu
,u0 correspond to a plateau on the observedJc(u) curves in
Fig. 8 in the region betweenu0 and the base data poin
logi50 atu50, whereJc(u) values through GB’s are hardl
accessible in resistive experiments. Thus, we are left w
two parametersb;1 and uc.20° –40° which can be ex
tracted from the best fit with experimental data, which a
usually well described by the exponential dependenceJc
}exp(2u/u0) with u0.4° –5°. The fact that all uncertain
microscopic parameters near GB’s,l D , mc , z k` , andl` ,
can be combined in a single parameterb markedly simplifies
the comparison of our model with experiment.

As an illustration, Fig. 8 shows the observedJc(u) for
YBa2Cu3O7 bicrystals7 at 77 K similar to analogousJc(u)
dependences for other thin film and bulk HT
bicrystals.1–3,5,6 Given the typical scatter of experiment
data, the fit, which corresponds tob52.7 anduc530°, turns
out to be quite good. The algebraic function~41! describes
well the apparent quasiexponential decrease ofJc(u) by two
to three orders of magnitude in the region 0,u,30°. The
calculated Jc(u) also appears to be rather close to t

FIG. 8. Fit with the experimental data on thin film@001# tilt
YBa2Cu3O7 bicrystals withb52.7 anduc530°. Curvess and d
correspond to thes andd pairings, respectively. They are related b
Eq. ~47!, whereJc(u) for the s pairing is given by Eq.~41!. The
dashed line shows the function exp(2u/u0) with u054°.
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straight dashed line in Fig. 8 which corresponds toJc(u)
5J0exp(2u/u0) with u054°.

So far we have not specified the symmetry of the or
parameter, since the finalJc(u) dependence is in fact onl
weakly sensitive to the symmetry ofD at u,uc . For in-
stance, theJc

(d)(u) for d-wave pairing is related to the
s-waveJc

(s)(u) as follows:

Jc
~d!~u!5cos2 2uJc

~s!~u!, ~47!

where the factor cos2 2u accounts for the matching cond
tions of the superconductingd-wave gap function on
GB’s.9,80 Equation~47! also implies that the gap suppressi
on GB’s is weakly sensitive to the symmetry of the ord
parameter, as was assumed by Hilgenkampet al.10 As fol-
lows from Fig. 8, the factor cos2(2u) only gives a relatively
small correction to the much stronger decrease ofJc(u)
caused by the local superconductivity suppression n
GB’s.

Since Eq.~41! describes well the observed angular dep
dence Jc(u), we can independently check the se
consistency of the model by comparing the absolute valu
Jc given by Eq.~45! with experiment. Likewise, the param
eter b extracted from the fit can be compared with wh
follows from Eq. ~44!. For b52.7, uc530°, b54 Å, j0
513 Å, lL051500 Å,t51/7, andu515°, we obtain, from
Eqs. ~45! and ~46!, that Jc;23105 A/cm2, in agreement
with typical observedJc values for@001# 15° tilt YBa2Cu3O7
thin film bicrystals at 77 K.3,6,7 In order to evaluateb, we
take d54b54r i , u55°, l D58 Å, j0513 Å, s50.25, z
52, andn05531021 cm23. Then Eq.~44! givesb52.7 for
l`mc.9 meV.Tc . For the 15° GB, thed-wave correction
in Eq. ~47! reducesJc by 25%.

The critical angleuc lies in the region 20° –40°, ifr i.b
@see Eq.~13!#. A more accurate estimate foruc is hard to
obtain, not only because the detailed shape of the NC c
regions is sensitive to the local parameters near GB’s wh
are not well known, but also becauseuc depends on the
atomic structure of the plastically deformed and compo
tionally different dislocation cores in HTS’s.24–29 However,
the dependence~41! is only weakly affected by the uncer
tainty in uc , if u is not too close touc . The parameterb
which determines the superconductivity suppression
GB’s, increases for layered HTS materials which have a
carrier density, short coherence lengthj0, and large screen
ing lengthl D . Notice that the local superconducting prope
ties on GB’s are determined not only by atomic displa
ments near GB’s seen by electron microscopy,24–29but rather
by the resulting variations of the local density of sta
N(EF ,r ) along the GB’s. The variations ofN(EF ,r ) could
be revealed by scanning tunnel microscopy, thus provid
very important information on the electron structure of t
insulating NC regions and the space charge layer near G

In this paper we considered the region of high tempe
tures Tc2T!Tc , in which many uncertainties of micro
scopic mechanism of high-Tc superconductivity can be ef
fectively treated by the universal GL equations. T
description of GB’s at lower temperatures is more mo
dependent and requires much more complicated Eilenb
er’s or Bogolubov–de Gennes equations.79–81 However, the
similarity in Jc(u,T) dependences observed on GB’s at hi
r

r
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and low temperatures allows us to assume that our mo
may give a qualitative description of the low-T region as
well. Yet there are new features characteristic of thed-wave
symmetry ofD, such as localized zero-energy electron sta
at the S-I interface, which may contribute to the tunnelingJc
of Josephson contacts in anisotropic HTS’s.79

When calculatingJc , we assumed uniform current flow
through GB’s which is characteristic of thin film bicrystals
thicknessLz much smaller than the Josephson penetrat
depthlJ5(cf0/16p2lLJc)

1/2, wherec is the speed of light
and f0 is the flux quantum. For bulk bicrystals, withLz
@lJ , the transport current only flows in the peripheral lay
of thicknesslJ , and so the total critical current throug
GB’s equalsI c5PlJJc , where P is the perimeter of the
GB’s.82 Thus the mean critical current densityJb5Jc /A,
normalized to the cross-sectional areaA, is given by

Jb5
~cf0Jc!

1/2P

4pAAlL

. ~48!

Equation ~48! corresponds to an isotropic superconduct
For an anisotropic slab withA5LyLz and London penetra
tion depthslLy andlLz along they andz axes, respectively
the factorP/AAlL should be replaced by

P

AAlL

→
2

LyAlLz

1
2

LzAlLy

. ~49!

The apparentJb in bulk bicrystals depends on the samp
geometry and is strongly reduced by the factorPlJ /A!1,
as compared to the localJc . At the same time,Jb(u)
}Jc

1/2(u) exhibits weaker dependenceJb}exp(2u/2u0) than
Jc(u) at u,ub , where ub is defined by lJ(ub)
.min(Lz,Ly). At ub.ub , the slope of lnJc(u) increases by 2
times, since, foru.ub , current flows uniformly through
GB’s; and thusJb(u).Jc(u).

In our model, the strong decrease ofJc(u) with u is due
to the excess ion chargeQ(u) of the GB dislocation struc-
ture. This was shown for the simplest anharmonic correct
ze2 in an isotropic approximation characterized by the sin
constantz. For orthorhombic crystalline symmetry, the ter
ze2 turns into the quadratic invariantzaeaa

2 1zbebb
2

1z1eaaebb1z2eab
2 which is proportional to the elastic en

ergy density in the Gru¨neisen approximation. The crystallin
anisotropy somewhat complicates the above analysis, b
does not change the key point thatQ(u) increases with the
GB dislocation densityb/d}sin(u/2), resulting in a shift of
the chemical potential and the superconductivity suppres
on GB’s. This was obtained in the framework of the contin
ous elasticity theory which can be used for low-angle GB
with d@b. The discreteness of the crystalline lattice and b
ken atomic bonds along GB’s can affectQ for higheru and,
in principle, could result in dips inQ(u) for certain symmet-
ric misorientations. This might pertain to the non-weak-li
behavior observed on some high-angle GB’s.83,84The atomic
displacements on GB’s which give rise to the nonzeroQ(u)
could also be independently obtained by scanning elec
tunnel microscopy,24,29 which would enable one to calculat
Q(u) andJc(u) for high-angle GB’s as well.
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Charge effects in HTS’s have recently attracted much
tention due to a possibility to affectTc by applying strong
electric fieldE, which can have various applications in s
perconducting electronics.56 As was shown above, the sig
nificant suppression ofJc(u) can be due to localizedE(x) of
the charged GB dislocation structure which shifts the che
cal potential on GB’s asu increases. This is similar to th
suppression of the order parameter on GB’s by external
voltage in HTS transistors, resulting in a significant chan
of Jc of GB’s observed in experiment.56 Another indication
of the importance of the charge effects on GB’s follows fro
electromigration experiments33 which showed a noticeabl
change ofJc across GB’s after applying pulse electric fiel
at T.Tc . This is consistent with our model in which eve
subtle changes in the ionic structure on GB’s due to e
tromigration can significantly affectQ and thusJc .

Summarizing the obtained results, we can point out
following main factors which can contribute to the lowJc
values of GB’s in HTS materials.

~1! The proximity of the HTS transition to the meta
insulator transition makes the order parameter on the G
sensitive to small shifts of the chemical potential caused
local excess ion charge on structural defects screened
electrons~holes!. This can result in the strong supercondu
tivity suppression near the GB amplified by the extend
saddle point singularities in the electron density of states
HTS’s.

~2! The antiferromagnetic insulating phase in the H
phase diagram manifests itself in the insulating core regi
caused by large strains near the GB dislocation cores
charge effects on the GB’s. These insulating core regions
strong barriers for current flow which also significantly e
hance the effect of the local superconductivity suppressio
the current channels atJ.0.

~3! The suppression of the superconducting coupling c
stant occurs in the double-charge layer near GB’s com
rable to the coherence lengthj0. This results in a large ef
fective thickness of the GB’s, which is also specific to HTS
due to their shortj0 and largel D . By contrast, GB’s in low-
Tc superconductors withl D!j0 are not strong barriers fo
current flow.

V. CONCLUDING REMARKS

In this paper we mostly focused on those general featu
of the current transport through low-angle GB’s which a
rather insensitive to the microscopic mechanism of superc
ductivity, the symmetry of the order parameter, and deta
structure of the dislocation core regions. Our model, wh
links the dependenceJc(u) with normal properties and th
phase diagram of HTS’s, describes well the observed str
dependence ofJc(u) on misorientation angle even for th
simplest ideal GB dislocation structure shown in Fig. 1. T
partial dislocation structure of GB’s in HTS’s~Ref. 31! in-
creases the effective thickness of GB’s, thus making
charge effects and the suppression ofD on GB’s more pro-
nounced. Macroscopic inhomogeneites of GB’s are due
local nonstoichiometry, faceting, and resulting long-ran
strain fields which can subdivide GB’s into weakly coupl
segments connected in parallel.85 Though important for cur-
rent percolation in polycrystalline HTS’s,13,16 the faceting
t-
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can hardly change qualitatively the general quasiexponen
dependence ofJc(u) on u which is mostly determined by the
segments of GB’s with maximumJc values.

Another important issue concerns the depende
Jc(u,H) in the magnetic fieldH, which is determined not
only by the local current transport through GB’s, but also
depinning of vortices localized on GB’s. The latter depen
on the change of the core structure of vortices on GB’s a
their magnetic interaction with strongly pinned bu
vortices.86 Here the charge effects on GB’s can also ess
tially contribute to the vortex pinning.55
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APPENDIX A

Here we give necessary formulas22 for the elastic strain
tensore ik . For a single dislocation,e ik is given by

exx5
by@~322s!x21~122s!y2#

4p~12s!~x21y2!2
, ~A1!

eyy5
by@~122s!y22~112s!x2#

4p~12s!~x21y2!2
, ~A2!

exy52
bx~x22y2!

4p~12s!~x21y2!2
. ~A3!

For a symmetric GB,e ik can be obtained by replacingy by
y2nd and summing up over the integern. This yields

exx1eyy5
eb~122s!sinq

coshp2cosq
, ~A4!

exx2eyy5
ebpsinqsinhp

~coshp2cosq!2
, ~A5!

exy52
e1~cosqcoshp21!p

2~coshp2cosq!2
, ~A6!

wheree15b/2(12s)d, p52px/d, andq52py/d.
Using Eqs.~3! and~A4!–~A6!, we can write the equation

Tc(x,y)50 for the NC core regions in the form

~coshp2cosq!2h5~coshp2cosq!sin q

1p0@psin qsinh pcos 2w

2upu~coshpcosq21!sin 2w#,

~A7!

where h52d(12s)Tc0 /Cb(122s) and p05(Ca
2Cb)/(122s)(Ca1Cb). Equation~A7! was used to calcu-
late the shapes of the NC core regions in Fig. 2.
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For the isotropic strain dependence ofTc(e ik) (p050),
Eq. ~A7! gives the explicit dependencex(y) in the form

x5
d

2p
cosh21Fcos

2py

d
1

1

h
sin

2py

d G . ~A8!

For the isotropic case, we can also obtain the shape o
normal NC regionsx(y) for the nonlinear dependenceTc(e).
Substituting Eqs.~A4!–~A6! into Eq. ~7! and solving the
quadratic equationTc(e)5T for e, we get

xn
65

d

2p
cosh21Fcos

2py

d
1

2pr n
6

d
sin

2py

d G . ~A9!

The boundary of the dielectric NC region can be obtained
replacingr n

6 by r i
1 . The maximum sizesxm and ym of the

NC regions across and along GB’s are given by

xm
65

d

2p
lnF2pr n

6

d
1AS 2pr n

6

d D 2

11G , ~A10!

ym
65

d

p
tan21

2pr n
6

d
. ~A11!

The NC regions shrink asd decreases. In the linear elastici
theory the NC regions touch only ifd→0 whenym

6→d/2.
However, for smalld the elastic approximation becomes i
valid, and the shape of the NC regions is determined
plastic and charge effects near GB’s.

APPENDIX B

The equation forF1,

¹2F12F1 / l D
2 54pZeN0e/k` , ~B1!

can be solved by the Fourier transformation,

F~x,y!5(
G

E
2`

` dk

2p
F~k,G!eikx1 iGy, ~B2!

whereG52pn/d is the reciprocal lattice vector along GB’s
The Fourier componente(k,G) equals

e~k,G!5
ibG~122s!

2d~12s!~k21G2!
. ~B3!

Therefore,F1(k,G) is given by

F1~k,G!52
2p iN0Zeb~122s!G

d~12s!~k21G2!~k21G211/l D
2 !k`

.

~B4!

Substituting Eq.~B4! into Eq. ~B2! and integrating overk,
we arrive at Eq.~17!.

Now we consider the equation forF2,

¹2F22F2 / l D
2 54pZeN0ze2/k` , ~B5!

from which we obtain
he

y

y

F2~k,G!52
2ezZN0

~k21G211/l D
2 !k`

(
G8

E e~k8,G8!e*

3~k82k,G82G!dk8. ~B6!

Here an asterisk implies the complex conjugate, ande(k,G)
is given by Eq.~B3!. In the coordinate representation we g

F2~x,y!5
ezZN0

pk`
(

G,G8
E

2`

`

dkE
2`

`

dk8

3
eikx1 iGye~k8,G8!e~k82k,G82G!

k21G211/l D
2

.

~B7!

The averaged iny potentialF(x)5^F2(x,y)& is given by
the term withG50 in Eq. ~B7!, whence

F~x!5
zZeN0b2~122s!2

4pd2~12s!2k`
(
G8

E
2`

`

dkE
2`

`

dk8

3
eikxG82

~k211/l D
2 !~G821k82!@G821~k82k!2#

.

~B8!

Performing integrations ink andk8, we arrive at Eq.~19!.

APPENDIX C

We seek for the solutions of Eq.~29! with the following
boundary conditions:

c~6`!5c` , c8~6`!50, ~C1!

c8~10!52c8~20!5G~c0!/2. ~C2!

From Eq.~29!, we obtain the integral of ‘‘energy:’’

1

2
c821U~c!5E, ~C3!

U~c!5
c2

2
1

i 2

2c2
2

c4

4
, ~C4!

whereE5U(c`). The boundary condition~C2! implies that
the particle moving in the potentialU(c) undergoes an elas
tic reflection atc5c0. Equation~32! for c0 can be obtained
for any G(c) by substituting Eq.~C2! into Eq. ~C3! at c
5c0.

Equation ~32! has several roots which correspond
stable (s) and unstable (u) distributionsc(h,c0) in Fig. 7.
Due to the symmetryc(h)5c(2h), the solutionc(h,G)
for G.0 can be obtained from the solutionc(h,0) of Eq.
~29! with G50 and the same boundary conditions ath6`
by the following rule:

c~h,G!5c~ uhu1h0,0!. ~C5!

Here the constanth0 is chosen to satisfy

c05c~h0,0!, ~C6!



y
e

ry

-
p

th

son

57 13 891CURRENT TRANSPORT THROUGH LOW-ANGLE GRAIN . . .
wherec0 is determined by Eq.~32!.
The valuecm is determined by the condition of energ

conservation,U(c`)5U(cm), which enables us to factoriz
Eq. ~C3! in the form

c825~c`
2 2c2!2~c22cm

2 !/2c2. ~C7!

Equation~C7! automatically provides the correct bounda
conditionsc8(0)5c8(6`)50 for c(h,0). Hereh50 cor-
responds to the valuec5cm which can be found by com
paring Eqs.~C3! and ~C7!. This gives a simple relationshi
betweencm andc` :

cm
2 52i 2/c`

4 5222c`
2 . ~C8!

Equation~C7! can easily be integrated to give Eq.~30!.
Now we turn to Eq.~32! which can be written in the form

1

2S G1c01G2

i 2

c0
3D 2

5
1

c0
2 ~c`

2 2c0
2!2~c0

22cm
2 !. ~C9!

Equation ~C9! can be solved analytically for two limiting
casesG250 andG1@1. ForG250, we have

v2
v2

2
1

w

v
5e, ~C10!

wherev5c0
2/(11G1

2/4), w5 i 2/(11G1
2/4)3, and e52E/(1

1G1
2/4)2. The cubic equation~C10! has three roots of which

only one withdv/di,0 corresponds to the stablec(h). As
seen from Fig. 7, the stable solution exists only below
critical current i , i c at which the pointss and u merge.
Differentiating Eq.~C9! with respect tou, we obtain

12v2w/v250. ~C11!
n,

r-
et
,

e

Excluding w from Eqs. ~C10! and Eq.~C11!, we obtain a
quadratic equation forvc , whence

vc5
2

3
2A4

9
2

2e

3
. ~C12!

Substituting Eq.~C12! back into Eq.~C11!, we arrive after
some algebra at the following equation fori c :

i c5~12S!~112S!1/2, ~C13!

where the functionS( i c) is given by

S~ i !512
12c`~423c`!

~41G1
2!2

. ~C14!

In two limiting cases, Eqs.~C13! and~C14! yield the depair-
ing current densityi c52/3A3 at G150 and

Jc5
J0

2G1
, G1@1. ~C15!

SinceJ0}t3/2 and G1}t21/2, the critical currentJc}t2 ex-
hibits the temperature dependence of S-N-S Joseph
contacts.78

Now we consider the caseG1@1 andG2.0 for which
c0}1/G1!1, c`51, cm

2 52i 2, and i c
2!1. Then we can re-

tain only the termc0G1 and all inverse powers ofc0 in Eq.
~C9! which thus becomes

1

2S G1c01G2

i 2

c0
3D 2

512
2i 2

c0
2

. ~C16!

Introducing the dimensionless parametersu, a, andq given
by Eqs.~40! into Eq. ~C16!, we arrive at Eq.~39!.
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