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Current transport through low-angle grain boundaries in high-temperature superconductors
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We consider mechanisms which can account for the observed rapid decrease of the critical current density
J.(6) with the misorientation anglé through grain boundarie&GB’s) in high-T; superconductoréHTS's).
We show that thd (6) dependence is mostly determined by the decrease of the current-carrying cross section
by insulating dislocation cores and by progressive local suppression of the superconducting order parameter
near GB’s asf increases. The insulating regions near the dislocation cores result from a strain-induced local
transition to the insulating antiferromagnetic phase of HTS’s. The structure of the nonsuperconducting core
regions and current channels in GB’s is strongly affected by the anisotropy of the strain depend&pce of
which is essentially different for YB&u;0; and Bi-based HTS'’s. We propose a mechanism of the progressive
superconductivity suppression on GB’s withdue to an excess ion charge on the GB’s which shifts the
chemical potential in the layer of the order of screening lethgthear the GB’s. The local suppressionaf
is amplified by the proximity of all HTS’s to a metal-insulator transition, by their low carrier density and
extended saddle point singularities in the electron density of states near the Fermi surface. Taking into account
these mechanisms, we calculate€ld) analytically by solving the Ginzburg-Landau equation. The model well
describes the observed quasiexponential decreadg @f with 6 for many HTS’s. Thed-wave symmetry of
the order parameter weakly affedg 6) in the region of smalb and cannot account for the observed drop of
Jc(0) by several orders of magnitude dsncreases from 0 t@=20°—-40°.[S0163-18208)06121-9

I. INTRODUCTION since the correlation between atomic displacements and a
microscopic mechanism of highs superconductivity is still
Mechanisms of current transport through grain boundariesincertain. In general, the material inhomogeneities along
(GB's) in high-temperature superconducta#dTS’s) have  GB’s cause modulations of the superconducting coupling
attracted much attention. The critical current density6) across GB’s which determines its global critical current den-
through GB's is very sensitive to the orientation of the adja-Sity J. after averaging the microscopic supercurrej(ts)
cent crystallites and strongly decreases with the misoriente?ver the relevant spatial scales.
tion angled in the range fromg=3°—-5° to §=30°—-40°1~7 The GB dislocation structure naturally accounts for the
The d-wave symmetry of the order parameter in HTS's alsodecrease ol (6), if one assumes that there are regions of a
contributes to the decrease &f( 8) with 6 and gives rise to  suppressed superconducting order parametaear the dis-
novel effects, such as junctions and fractional vortices on location cores which block the supercurrent through GB's.
GB's®? The rapid decrease af,(6) with 6 essentially ~These nonsuperconducting cofdC) regions of radius
limits the current-carrying capability of HTS materials which ~b can result from local compositional and hole concentra-
inevitably contain GB networks or colonies of misorientedtion variations, additional electron scattering, and significant
grains**~18For instance, the decrease of the fraction of high-
angle GB'’s in biaxially textured HTS's substantially in-
creased the critical current to a higher level determined by
vortex dynamics and pinning, rather than by the GB
transparency® =2
A conventional modéf?® describes a symmetric low-
angle GB's as a chain of edge dislocations with the Burgers
vectorb perpendicular to the GB plangig. 1). The struc-
ture of GB’s in HTS’s can be more complicated than the
idealized one shown in Fig. 1 due to partial GB dislocations,
faceting, long-range strain fields, and compositional varia-
tions near GB'$4 31 These factors give rise to structural and
chemical inhomogeneities along GB'’s on a broad variety of
scales, from the nanoscale of individual dislocation cores to
the macroscale of GB facets. Yet even in those rare cases FIG. 1. Chain of edge dislocations which form a symmetric
when the atomic structure of a GB is known, the effect oflow-angle grain boundary in thez plane. The nonsuperconducting
this structure on superconducting properties remains uncleatore regions are shadowed.
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strains near the dislocation cores. High-resolution electroNC core regioné? For the d-wave symmetry of the order
microscopy has shown that the low-angle GB's do consist oparameter, faceting can also cause decreadifg),'® but
chains of edge dislocations separated by regions of a weakipis mechanism gives the relatively weak dependedce
distorted crystalline lattice and also exhibit compositionalecos 26 which is not sufficient to explain the observed drop
variations and strain fields near the Cu-rich dislocation corefn J.(6) by two to three orders of magnitude without the
on the scale=10-300 A both along and across GB%3!  assumption of the local depression &fon the GB’s. The
The dislocation model predicts the critical misorientationgap suppression due to local nonstoichiometry near the GB'’s
angle 6, =2sin }(b/4r;)~=20°—40°, above which the NC re- IS mostly d_etermlned by mgterlals factors, such as _dn‘fu3|on
gions overlap, and GB’s become a continuous insulating off OtX,ybgetn f{” [ﬁma_neq} str:tam fftldsja(rg)und Gﬁ’s Vt‘)’h'Ch rgay
i contribute to the significant scatterJdg( ) usually observe
normal Josephson contact with much smaller than the on HTS bicrystals of the same misorientatiért’ However
intragrain critical current densityy. For <6, this model h v uni g d 0)oc a0 b,
gives an approximately linear dependendg(6)=(1 e nearly “universal® dependenca(6)eexp( b) 0b-

~6165)J,, if one assumes thal(6) is determined by the served on many HTS'¢§Refs. 5 and Hseems to indicate a

. , . . _fundamental intrinsic mechanism of the GB weak-link be-
area of current channels in GB’s between the dlslocat|orp1avior common for all HTS's

cores! However this linear de.pendencfc(a)o IS muclh In this paper we propose a model which describes the
weaker thanl.(6)>exp(-6/6,) V‘f'gh fo=4°-5°, which IS ,pserved, (), taking into account the GB dislocation struc-
usually observed experimentaffy’ Models have been pro- e and the fact that a comparatively small shift of the
posed in which the current channels in GB’s are described agyemical potentials near GB's can strongly decreagg, or
an array of parallel point contacfs® which exhibit weak-  even turn HTS's into an insulating antiferromagffeBe-
link behavior, if their width becomes smaller than the supercause of the proximity of HTS’s to the metal-insulator tran-
conducting coherence length®® that is, d—2r;<¢, or §  sition, the strains and excess ion charge of the GB disloca-
<6;=DbI[&(T)+2r;]. At 77 K, the in-planeg(T) is about tion structure can locally induce a dielectric phase near
35 A, whence#;~5° for r;=b=3.8 A, which correlates dislocation cores and cause progressive overall suppression
with the observed sharp decrease &f(6) above 6  of the superconducting order parameter witlin a narrow
~3°_7°17 layer of the order of the screening length near GB’s. The
The theoretical description of the observed dependenc&odel provides an intrinsic mechanism for the rapid de-
J.(6) remains incomplete, not least because of a variety ofrease oflc(6) with 6 and describes well the observad 6)
relevant physical mechanisms and the multiscale heterogengépendence in HTS bicrystals, even without invoking the
ity of GB’s. The rapid decrease d(6) is usually ascribed local nonstoichiomentry apd heterogeneity of .GB S. F?r
to the strain-induced, or compositional suppressiot okear small 9, the local suppression of superconductivity at GB’s

dislocation cores and in the layer of thickneg®) near IS Shown to affec(¢#) much more strongly than the sym-
GB's2**! Then the array of parallel current channels in metry of the order parameter which manifests itself at higher

GB's is regarded as an effective Josephson contact, fof- W€ obtainde(¢) by solving the Ginzburg-Landa(GL)
which " “equation which describes well the practically important tem-
perature rangd&>77 K for HTS's.
The paper is organized as follows. In Sec. Il we discuss

Jerexd —1(0)/En(0)],  1>&n, ) mechanisms which determine the structure of the NC regions
and the gap suppression near GB’s. We first consider a strain
€mechanism which gives rise to a composite structure of the
NC regions consisting of a dielectric core surrounded by a
normal shell. The shape of the NC regions is strongly af-
fected by the in-plane anisotropy of the strain dependence of
I H T.. Then we consider the electron screening of the excess
positional \_/arlat|ons near GB’; could account fo.r the ob-j, charge of GB's which results in superconducting gap
served rapid decrease 0f(6) with 6. However, this phe- ¢ nhression near the GB's amplified by the proximity of
nomenological approach has several inconsistencies. Fir§ltgs tg the metal-insulator transition, low carrier density,
Eq. (1) can be used for a clean metallic GB, provided thatyng extended saddle point singularities near the Fermi sur-
I>28\=2£(0)Tc/T. This implies a fairly wide layer of sup- 506 |n Sec. 11l we propose a model described by the GL
pressed order parameter near the GB 00 A at 4.2 K, equation which takes into account the current channel struc-
which would result in negligible; at 77 K. Yet, the weak- e of a low-angle GB’s and the local gap suppression near
link behavior of GB’s and strong decrease {{(¢) have  Gp's. This exactly solvable nonlinear model enabled us to
been observed both at 4.2 and 77 K, V“Z'Qh"?‘t 77 Kexhib- gptain an analytical formula foi.(6) which gives a strong
iting rather high ;/alues~10'5 Alem® in thin film  though nonexponentindecrease ofi(6) with 6. In Sec.
YBa,Cus0, bicrystals?*~’ Second, the strain fields of a sym- |/ we compare the model with experiment and show that the

; H 22
metric GB exponentially decay over the lendts d/2, theoretical J.(6) dependence describes well the observed
which decreasess ¢ increases. To account for the increasej () in YBa,Cu,0, and Bi-based HTS's.

of 1(6) with 8, one has to assume nonperiodicity of the GB

dislocation structure and distribution of** compositional Il. CURRENT CHANNELS IN GB's
variations near GB’s, macroscopic strain fields produced by
the GB facetsS! etc. The periodic long-range strains near
low-angle GB’s can even localiyncrease T for small 6 and A qualitative description of NC regions can be made, as-
depressl, at largeré due to proximity effect coupling of the suming that the superconducting coupling consigm) near

whereéy is the characteristic decay length which can be th
proximity length for metallic GB’s or the tunneling length
for insulating GB’s® Thus, basically any increase bf6)
with the dislocation densitip/d= 6 or decrease of due to
additional electron scattering on GB’s dislocations and com

A. Strain mechanism
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the dislocation core becomes spatially inhomogeneous due to ' ‘

its dependence on the local strain tensgr. The suppres- I n
sion of A near the cores can be quantified in terms of the !
tensorC;, which determines the shift of; in a weakly de- @

formed superconductor:
Tc=Teo— Cik€ik - 2

The strain dependence of; in HTS's can be highly
anisotropic®=*" For instance, for optimally doped
YBa,Cu;0; single crystals, it was found thatT./dp,=

—(1.9-2) K/IGPadT,./dp,=1.9-2.2 K/IGPa, andT./dp;

=—(0-0.3) K/IGP#?® wherep; is the stress along thigh 05
axes. The hydrostatic pressure derivativdT./dp
=2,dT./dp; yields a comparatively small valudT./dp

0.5f

y/d
o

=0.3 K/GPa which results from a cancellation of large, al- Ak L

most equal, and opposite in-plane effects of different signs. (3

This is usually ascribed to the influence of Cu-O chains, ‘ . . ‘
orthorhombic distortions of the Cu-O planes, charge transfer - 05 0 05 1

effects, eté¢>*®By contrast, BjSr,CaCy0, exhibits nearly
isotropic in-plane pressure derivativeé$,/dp,=1.6 K/GPa, ' ‘ ‘
dT./dp,=2 K/GPa, but large negativéT./dp.=—2.8 K/ n
GPa along thec axis, so thatdT./dp=2;dT./dp; again
largely cancels under hydrostatic pressure. Doping can sub-
stantially affectdT./dp;; for example, thedT./dp; values

(b)

for underdoped YB#u,0O; with T,~40 K are about 2—10 051
times larger than those for the optimally doped
YBa,Cu0,. %8
For planar deformations, E¢2) becomes 2 or L

OT=—Cl e+ p(exx— €yy)COS 2+ 2p€,,SQNX)sin 2p],
(3 0.5-

where p=(C,—C,)/(C,+Cp), e=ente,y, C=(C4

+Cp)/2, ande is the angle between theaxis taken along

the normal to the GB’s and tha axis in Fig. 1. The con- At 1
stantsC,= —dT./de,, and Cp=—JT./de,, determine the //\\

change ofT. under uniaxial compressiore(<0); for ex- N y
ample,C,=—217 K andC,=316 K for optimally doped ' xid
YBa,Cw,0;_ 5 single crystald! For C,=C,, which corre- ‘ . . ' .
sponds to the nearly isotropic in-plane dependehge;,) L,\/\J
found in BLSL,CaCyO, (Bi-2212), Eq. (3) reduces tosT, 4k b4 ©
=—Ce. Assuming isotropic elastic constants in tlad 0

plane?® the shape of the NC region for a single edge dislo-
cation can be evaluated from the conditiog(r) =0, using

Eq. (3) with ¢=0 ande;, from Appendix A. For the dislo-
cation atx=y=0, the boundary of the NC region is de-
scribed by T o Y
[()=2r sin ¢(1+py cof ), (4) 0
bC(1-20) C.—Cp - sl

O i To(l—0) P (1=20)(C,+Cy)’
whereq is the Poisson ratio angl is the polar angle. For the ng
Ar

isotropic strain dependence ©f, Eq. (4) describes a circle 0

of radiusr, centered ak=0,y=—r, [Fig. 2(a)]. For aniso-

tropic T(€;) With |pg|>1, the characteristic size of the NC 4 o5 o 05 p
region becomes;=r,|pg|, and its shape changes as shown x/d

in Fi_gs. 4b) and Zc). i . . FIG. 2. Nonsuperconducting core regions in a symmetric GB
Figure 2 shows the NC regions in a grain boundary Ca"calculated from Eq(3) for 6=15° ando=0.28. (8 shows the

culated from the conditiof¢(r)=0, whereT is given by  jsotropic case=0 for C/T.=20. (b) and(c) show the NC regions

Eq. (3), 2¢=m—0, and ¢ for the periodic chain of GB  for the anisotropic cas€€/T =10, p=5.3 (b) and C/T¢,=10, p
dislocations is taken from Appendix A. For isotrofig &), =-53(C).
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FIG. 3. Phase diagrari(c) of high-T, superconductorsa), At
where I, N, and S correspond to the insulating, normal, and super-
conducting states, respectiveljn) shows(a) replotted in theT-e
coordinates. 135 - 05 0 05 1 15
xid
the NC regions shrink and flatten along GB’s@mcreases, FIG. 4. Composite structure of the nonsuperconducting core re-

but they do not touch for angl. The latter is due to partial gions in a GB for the isotropic case calculated from Eg.for ¢
compensation of the dipole strain fields of GB dislocations,=15°, T=77 K, AT,=1 K, C=300 K, T,,=90 K, ando=0.28.
resulting in the exponential decay af,>exp(—2]x|/d) The inner .region(l) is in an insulating state surrounded by the
away from GB'’s. For anisotropi€.(e;), the NC regions do normal regions.

not overlap as well, though their shape depends on the sign

of p and can significantly differ from the isotropic case. As  Tc¢=Tco— Ca€aa— Chenp— Qa€aa— Qvenp— Q1€an€bp
an illustration, Figs. @) and Zc) show NC regions for typi- 2

cal YBaCuO;_ 5 valuesp= *+5.3, where the plus sign cor- ~Qz€zp- ©)
responds to the case show.n. in Fig. 1, and the minus sigh, o simplest version of Eq(6) with C,=C,, Q.=Q,
corresponds to the transposition of th@ndb axes. For the =Q,/2, andQ,=0 corresponds to a purely isotroplg(e)

anisotropic strain dependence ®f, the current-carrying \ynich depends only on the dilatatian
cross section of GB’s can be strongly reduced by off-

diagonal components o§;,. This may contribute to the Te=Teo—Ce—(Ce)2/4AT,,. 7
weak-link behavior of001] tilt GB’s in the basal plane of
YBa,Cu;07_ 5. Here AT, =T.n— Tco, and the coefficients in Eq.7) are

The above description, based on the linear strain deperchosen such that the maximum value Tf equalsT,.,, at
dence(2), can be used for NC regions much larger than e,=—2AT,,/C, and dT./de gives the observed at e
This impliesC> T, in Eq. (5), which corresponds to under- —0. The pressure experiments have shown 8B, <T.,
doped HTS® ¢ or significant local nonstoichiometry near at least for optimally doped HTS® ™ In this caseT,(¢)
GB'’s. However, for optimally doped HTS'so(=0.28, C  vanishes at comparatively weak strai=2AT,T.o/C
=300 K, andT,,=100 K), Eq. (4) yields a fairly small <1, for which the linear elasticity theory is still applicable,
diameter of the NC region,rg=0.3b=1 A. This indicates SinceC>T.
that the linear approximationi2) of T.(e;) is not self- Now we can estimate the size of the NC region for the
consistent, since the elastic straigs=b/27r, near the dis- NonlinearTc(e). For the isotropicTc(e), the conditionT,
location cores become so strong that the linear exparigjon =0 Yields a  quadratic —equation  for e=Db(1
of T in €; is hardly adequate. Thus, we have to take account’ 20)sin ¢/2m(1—o)r. Its solution gives two circular NC
of the actual nonlinear dependenceTgfon €; shown in Fig. ~ f¢9!oNS desctnbe_d by Eqs4) ath(S) with po=0 andry
3 with a characteristic maximum at the optimum strajp, ~ 'eplaced by (Fig. 4. The radiir;" are
which reflects the nonmonotonic dependencé’g)t;szTS’s
on the hole concentration on the Cu-O planes.><In the + To, ——
absence of structural transitiong,( €) may%e approximated Fi _E( L+ ap=1), ®
by a conventional parabolic function, which describes well
the observed dependenceTyf on hydrostatic pressunein ~ Where ao=T/AT,. For AT, <T., the nonlinearity of
HTS's*-%The general quadratic dependefgée;;) in an-  Tc(€) increases; by the factor T/4AT ) Y2.as compared to
isotropic HTS’s can be written in the forf,=T,—Cjje;;  Fo- FOr optimally doped Bi-2212¢-=0.28, C=300 K, T¢o
—Qijui &) €1, Where the tenso®;; is symmetric with re- =100 K, andAT,,=4 K; we obtain from Eq(8) that 2r;"
spect to the transpositioin—j andk« I, and the principal ~b. The local nonstoichiometry near the Cu-rich dislocation
values C,, Cp,, and C. of C;; determine the observed cores*may considerably increase the ra@dT, in Eq. (8),
dT./de; for €;—0. For orthorhombic symmetryQ;; has  thus further increasing; .
nine independent componentshut for planar deformations For the anisotropicT.(€;,) dependencé6), the solution
Qiji has four independent components; so of the quadratic equatiom[ € (r (¢))]=0 for r(¢) yields
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r(¢)=ro sin B[ \(1+2py coS ¢)*+9(¢)

+(1+2py cog ¢)], (9)
9(¢)=0o+91(cos ¢—o sir? )
+0,[(1—20)%—4 cog ¢]+gsctg?e cog o,
(10

wherego=4QTo/C?, 91=4(Qa—Qp) Teo/(1-20)C? gy
=(Q1—2Q) Teo/4(1-20)°C?,  g3=Q,Tco/4(1—20)*C?,
and Q=(Q,+Qu)/2. For the isotropic case,
Bo=01=0,=03=0, Q=C?/4AT,,, Eq. (9) reduces to Eq.
(8). Unlike the isotropic case, the shaperdfp) for the an-
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where 7= (T —T)/To. The size of the normal NC region
along GB's, L,=2(r, +r,)=2ro(1+ agr)¥¥r, increases
with temperature. For optimally doped Bi-224%7*¢ we
haveT =100 K,AT,=1-2 K, ag=T/AT,=45-90,T
=77 K, andr=1/7; we obtair_,=(100—140) ,~50-70 A.
As above,L,(T) may increase due to the local nonstoichi-
ometry near GB'’s.

Using Eg.(11), we can estimate the critical angk,
=2 sin Y(b/2L,,), above which the normal parts of the NC
core regions of neighboring dislocations start overlapping:

o gt T T T)
" C(1—-20)V1+agr

(12

iSOtI’OpiC case can be Changed by the nonlinear terms in E(nlor 77 K and the numbers used above, this y|e|ds
(6). We do not discuss here the anisotropic case in morg (77 K)=~3°-5°, in agreement with the observed onset of

detail because of a lack of experimental data @n for
YBa,Cuz0s.

the sharp drop id.(6).1~" By contrast, the dielectric parts of
the NC core regions may start overlapping at a much higher

The structure of the NC regions may be further Clariﬁedang|egc than 0n . Using Eq(s), we can estimate the critical

by the phase diagram of HTS&.(c), shown in Fig. 3. In-

angle§.=2 sin * (b/4r;") as follows:

deed, using the electroneutrality condition, the isotropic

strain dependence af.(e) can be qualitatively mapped onto

the domelike dependence ©f(c) on the hole concentration

c, if €(r) varies weakly on microscopic scales, such as the

screening lengtlisee below and ¢. Figure 3 clearly shows
that the slopeC=dT./de increases a3 . decreases, giving
the observed strong sensitivity of the ra@éT, to the local

27(1—0)T
C(1-20)(1+ 1+ ag)

ForC=300 K, T;,=90 K, andAT=1-2 K, we obtain from
Eq. (13) that 6.=30°-40°.

6,=2sin !

(13

doping levet**~#¢51Under these assumptions, we can replot

the phase diagram ifi-e coordinates as shown in Fig(i3

and conclude that fof =0 the NC regions are partly in an

5,24

insulating(l) state}=" since the poinfT.=0 is close to the

B. Electron screening in GB’s

The strain decay lengtld/27=b/276 becomes smaller
thanb~4 A at comparatively small angles>9°, for which

region of the HTS phase diagram which corresponds 0 agqgitional mechanisms can contribute to the suppression of
insulating antiferromagnet. Recent measurements of resistivperconductivity near GB’s. We consider here a local redis-

ity p(T) of La,_,Sr,CuQ, in high pulsed magnetic fields
revealed an insulating behavior p{T) even in the super-

conducting region of the phase diagram after suppression qfc

tribution of the carrier densityi(x,y) and the shift of the
chemical potential. at the GB’s which both strongly affect
in HTS’s. If e(x,y) varies over scales shorter than the

the order parameter by a magnetic field. Therefore, th‘bebye screening lengthy =[ ../4me?N(E¢)]Y2 the local
strains might cause the local S-I transition near the dislocag|ectroneutrality assumed in the previous section becomes

tion cores in larger domains determined By(e)=T;,

invalid. Here x,,=20-30 is the dielectric constant of the

whereT; corresponds to the intersection of the superconductyyic |attice of HTS <58 N(Eg) is the density of states on the

ing and insulating regions on the phase diagram in Fig. 3

The nonzerodl; can be taken into account by replacifig,
with To— T; in Eq. (8). Notice that Winkleret al®® reported
on a significant dielectric fraction in GB’s for a J201] tilt

Fermi surface, and-e is the electron charge. Unlike loWw;
superconductors, HTS’s haug comparable to the coher-
ence lengtht,,>>*®and so the charge effects are essential, if
the width of current channels in GB’s becomes smaller than

YBa,Cu;O; bicrystal which manifests itself in Fiske reso- 5|

nances on-V characteristics. A largé, depression was also

observed on a 7° Bi-2212 tilt bicrystai$.

The NC regions therefore have a composite structure cong;, lp=(k..Srg) %2 for s<i,rg and lp=k.rg/2 for s

sisting of insulating and normal domains, whose boundarie§K r
oo

are defined by the conditionB,(e)=T; and T;(e)=T, as

D
For an ideal electron gas in layered materials, the in-plane
screening lengthy is independent of the electron densify,

5. Hererg=7%2/mé? is the Bohr radiusm is the in-
plane effective mass, ansl is the interlayer spacing. For

shown in Fig. 4. For a single dislocation, the dielectric do-j75'5 the characteristic values b6=5-10 A (Ref. 56

main is a circle of radius;,” centered ak=0,y=—r;" (as
seen from Fig. 3, the second solutiop for underdoped
HTS'’s corresponds to a normal dompiiihe outer shape of
the normal domain is two circles which touchaty=0,
their radiir, being described by Eq$4) and (8) in which
T.o should be replaced by ,—T:

11

LT
rEZ—O(\/l-i- agTt 1),
2T

become larger than the strain decay lengi@76 for 6
>4°-7°. For highem, the sizes of the NC core regions are
smaller than the thicknesd 2 of the space charge layer near
GB'’s; and thus the suppression &fon GB’s is mostly due
to the electrostatic potentidh(x) near GB’s.

We describe screening around the GB dislocations in the
normal staté? using the Thomas-Fermi equation

V2D —®/13=—47ZesN(X,y)! k.., (14)
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whereZe is the ion charge andN(x,y) is the perturbation bolic dependenc&.=T.,— A(n—n)?, the uniform shift of
of the total ion densityNy caused by the GB strains. Notice the critical temperaturéT (x)=T.(x)—T.o along GB’s is
that for a two-dimensional2D) ideal electron gas, the non- given by 6T,= — A(®,/4=l3e)?, where( ) stands for spa-
linear corrections to Eq14) are abserit! tial averaging ovey. In GL theory the suppression af near
The atomic structure of the GB'’s in layered HTS’s can beGB’s is determined by the dimensionless paramétes
very complicated, since it depends not only@rbut also on  — [ 5T (x)dx/ &, T, (See belowwhich can be obtained from
the way the different ions in adjacent crystalline lattices areeq. (17) in the form
matched on GB'$® However, the important qualitative fea-
ture of the GB structure is that it has an excess ion ch@ge r AD2 (2+9)Vi+g+g®—2g-2
which is screened by electroiiBoleg. We calculateQ for 1= —
low-angle GB'’s, for which we can use the continuous elas- 2Teodoé0  G(1+9)*1+V1+g)
ticity theory for the GB dislocations, and thus express theyhereg=(1,G) 2. For >b/2xl, that is,g<1, the ex-
excess ion density at the GB's in terms of measured macrgyression under the sum in E@.8) reduces to 5/4,G°. Since
scopic parameters. To do so, we consider the simplest is@p_ in Eq. (18) is proportional to Id, the parameteF; = d*
tropic expansion oBN(x,y) in elasticstraine(x,y), «1/6° rapidly decreases wit#. Therefore, the first linear
term in Eq.(15) due to elastic strains cannot give rise to any
progressive depression &f on GB’s with 6.

Here the linear term ire describes the periodic ion density ~ BY contrast, the anharmonic contributigh,(x,y) con-
variation in elasticity theory which gives zero charge aftertains a nonoscillating term which decays olgracross GB’s
averaging along GB’s. The quadratic term describes the firnd describes a shift of the mean electrostatic potential
anharmonic correction, wheigis the Gitneisen parameter P (X)=(®2(x,y)) due to the excess ion charge on GB'’s. As
which determines the thermal expansivity and is usuallyghown in Appendix B®(x) is given by

about 2 above 20-30 R:5° Although small, as compared to

(18

SN=—Ng(e+{€?). (15

G _ _
the linear term in Eq(15), the quadratic term is important, D)= —FI2 E"‘ 2Glpe /b g=2IXC 19
since it has a nonzero mean vaI@=—NOZe§f<ez>dx )= P& (21,G)%—1 :

which gives the excess ion charge per unit area of GB’s due _

to reduced ion density in the layer of thickned®@m near where F=meZNy(b?(1-20)?/2d*(1—0)?k... Since the

GB's: sum(19) diverges logarithmically at largé, we introduced
a cutoff G,,~2#/r, determined by the size of the dielec-
tric core region, where Eq(14) becomes invalid. Fom

>b/27lp, the second term in the numerator of Ef9) can

be neglected, and(x) takes the form

* dk
Q=—§eZNOLm§ |e(k, G5~

- [ZeNy(1—20)%b? d

= In—, (16) D(x) = Doexp(—[x|/1p), (20)
16md(1—0)2 Ti o o
where®d, to logarithmic accuracy is given by
where the Fourier componer(k,G) was taken from Ap-
pendix B. The total ion charg®( ) increases approximately eZNyZb(1—20)2lpIn(d/r;)
linear with the GB dislocation densitys/d=sin(¢/2). The Po=— 21— o) sin; . (22)

nonzeroQ results in a uniform shift of the meah(x) which
decays across GB’s on the screening lentghwhich is

The amplitude® increases approximately linear withfor

larger thand/27 in the crucial region of intermediate. 9<1. Taking for YBaCu0,°¢62 ¢=0.25, ZNy=ny=5
It is convenient to writab as® =®;+®,, where®; and  x10*' cm 3, and x..=20, we obtaine®,~6 meV for d
®, are determined by the linear and quadratic terms in=4b=4r;, #=20°1,=8 A, 7=2.
ON(e), respectively. The solution of Eq14) for ®4(x,y) The 2D isotropic equatioril4) gives the simplest self-
obtained in Appendix B has the form consistent description of charge effects near GB’s, although
it does not take into account all characteristic features of the
electron band structure of HTS’s and nonlocal electron
screening. The nonlocality increases the effective screening
length for charge fluctuations with the wave veckocom-
where  ®,=—27NoZel(1-20)13/d(1-0)k., G  parable to the 2D Fermi wave vectig=(2mn,s)¥25” Due
=2mn/d, Go=(G2+15%)2 andn=0,£1,=2,.... Here to the low carrier densityy, the conditionk~27/d~kg is
®,(x,y) oscillates along GB’s and exponentially decayscharacteristic of GB’s in HTS's, resulting in the effective
across GB’s on the lengtl¥2n. Therefore, the screening screening lengthl, which can substantially exceed its
effects in the first order i only renormalize the size of the Thomas-Fermi value. Thus, the electric potendiix) near
NC regions calculated in the previous section, since the flucGB’s becomes more long range, varying on lengths of the
tuation of the carrier concentration n(x,y)= order of the mean spacing between carriens, 13 \which is
—®,(x,y)/4ml3e varies on the same spatial scales as theabout 6 A for optimally doped YB&LU:0; (npg=5
lattice strainse(x,y). X 10?2 cm™%). We do not consider here the more compli-
The oscillations ofén(x,y), along GB’s also result in a cated nonlocal screening near GB'’s, restricting ourselves to a
uniform suppression of the loc@l. near GB’s. For the para- qualitative description in the framework of the Thomas-

D,(x,y)=D, >, [e XC-Ge XCoG,]sinGy, (17)
G>0
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Fermi approach with an effectilg extracted from observed 4y E
strong electric field effects in HTS'’s which indicate that

~5-10 A% \ /‘K_
The nonlocality also make® (x) dependent on details of

the electron band structure of HTS'’s, such as the extended X

saddle point singularities near the Fermi level and planar _//\\

portions on the Fermi surface along tHe00] and[010] di-
rections in the Brillouin zon&*%" For s>k.rg, the
screened potentidh(x,y) is long rangé’ (P« 1/r%) and also

exhibits Friedel's oscillation&°°

N .. -

Co COSQx / )
D(x)oc Te IXI/ey, Qlx|>1, (22 FIG. 5. Suppression of the order parameter near GB’s due to the

variation of the chemical potential in the layer of thicknedg 2
along thea or b axes. HereQ is the nesting wave vector <§_(T)._ The dash_ed curve depicts the energy of the extended saddle
between the neighboring planar portions of the Fermi surPint singularity inN(E).
face, which isQ~0.3 A~ for optimally doped HTS'§4-5¢
This gives the period of the oscillations=27/Q=20 A.  stant electrochemical potential= x+e®. However,T of
The factor expt-|x|/£;) accounts for the damping of the Frie- HTS's is generally quite sensitive to small shiftsof since
del oscillations in the superconducting state, wher€rT) comparatively small changes of the in-plane hole concentra-
weakly depends on temperature and approximately equal®n ¢ can cause the transition into an insulating
the superconducting coherence leng(b) atT=0.5869|m-  antiferromagnéf (see Fig. & Due to the small Fermi energy
purities do not affect the Friedel oscillations, if the electronin HTS’s, Er~0.1 eV, the above-estimated shift af on
mean free path; is much larger thai,. The casd;>¢,is  GB’s bye®~5-10 meV~T, appears to be of the order of
characteristic of HTS materials which usually correspond tdhe change ofx which can cause strong local suppression of
the clean limit &,<<l;. Therefore, the lengthly~¢&; A So6TT07
=~10-15 A can be regarded as an intrinsic effective thick- These qualitative estimates indicate that the charge effects
ness over which the order parameter is depressed near than provide a universal mechanism of the local superconduc-

GB's. tivity suppression on GB’s. This mechanism is amplified by
the extended saddle point singularities in the HTS electron
C. Heterogeneity scales of thd, suppression on GB'’s density of statedN(E) observed in photoemission experi-

. . , ments at energieE= — u;~20-30 meV below the Fermi
Now we consider how the heterogeneity of the GB's cang, | 64-67 The resulting singularity ifN(E) near the Fermi

affect supgrconduqting pr.operties..The NC regions, spaced  face not only can enhance the bilk, "X but also can
by d, conglst of an msul_atlng domain of S|zei25urr_ounded makeT, sensitive to any shifts of. of order ;. Sincee®,

by metallic sheI_I in which thdocal superconducting COU- 5 GB's turns out to be comparable to the, the shift of the
pling constani\ is suppressed on the scale of a few atomlcpeak inN(E) away from its presumably optimum position at

spacings. Belowl ., these small metallic core regions*( u, can further suppresa in the layer of thickness I3

<¢§) become superconducting due to the proximity effecty . 14 GB’s. as shown in Fig. 5.

and therefore transparent to the transport current. HOWever, \ya astimate the suppression Afx) due to the local

the dielectric core regions are not affected by the prOXimityvariations of ®(x) in GL theory which has been used to
effect and remain stronger barriers for the current flow. FordescribeA(x y) near various structure defects for bath

Fhe idee}l GB’s shqwn in Fig. 1, the size calgulated above andd-wave symmetries of the order paramétend in the
in the I|nea_1r elast|C|ty_ th_eory c_Jecreases withdue to the presence of extended saddle point singularittedle illus-
compen'satlon of strain .flelds in GB’s aisdecreaseséseg trate here the essential physics by the simptesave GL
Appendix A). However, ifr;(¢) becomes comparable with o ation, since (6) calculated below turns out to be only
b, the decrease df; is limited by plastic effects near dislo- 04y sensitive to the symmetry fin the region of smalb.

- 272 : ,
cation cores"The local suppression af on GB's due 10 e G| equation with a locally nonuniform superconducting
the NC regions is determined by the paranf&ter coupling constan (r) has the forr®

L2 6
I~ =sin;, (23) To(r) A2
d§o 2 £V2A+|In-% - 3/A=0 (24)
0

which is a fraction occupied by the normal NC regions in the
layer of thicknessty near GB’s. These normal regions give
rise to the proximity effect suppression dflinear in the GB ~ Here &, and A, are of the order of the zero-temperature
dislocation density. coherence lengtf(T)=&,/\/7 and the gapA(T)=7A,,

For 6>b/2ml , the NC regions become smaller than the fespectively, andr=(Tq,—T)/To<1 near the bulkTc.
screening length,, : thus the superconductivity suppression The value&y= (¢o/2mH,Tc)"? can be extracted from the
on GB's is mostly due to the shifb, of the averaged elec- Observed temperature derivative of the upper critical field
trical potential on GB's. This results in the opposite shift of H., at T¢, giving &~13 A for YBa,Cw0O; (T,=90 K,
the chemical potential by w,=—e®, to provide a con- H;,~2 T/K). Taking the BSC-type dependenc&,
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=weexp(—1/A) and assuming thal. is mostly determined if the effective GB thickness$y;=2Il5 and the dislocation
by the local depression of near GB’s, we can rewrite Eq. spacingd are much smaller tha&(T) [which corresponds to
(24) in the form 0>b/&(T)~5° for YBa,Cu;0; at 77 K|. In this case the
particular shape of the NC regions becomes less essential,
1 becauseA(x,y) is mostly determined by(x,y) averaged
NGO = (25 along GB's*? Sincel,<&(T) nearT., the localized poten-
tial V(x,y) can be written as

AZ
T——
A

EV2A+ S|A=

0

where \ ., is the coupling constant away from GB’s. The
right-hand side of Eq(25) describes the localized perturba- *
tion V(r)A due to the suppression af(®) near GB’s. As- V=Vod(x), Vo= f_OC(V(x,y))dx, (28)
suming a smooth dependence Yfon u, we getV(x)= ) .
—ed(X)(IN.. [ap)IN2, if edy(6) is smaller than the criti- wherg{- -+ ) stands for the spatlal averaging anng GB’s, and
cal shift of the chemical potentigh, which causes the 9(X) is the delta function. Itis convenient to rewrite Eg6)
superconductor-insulator transition. Sindg, on GB’s in- M the following dimensionless form:
creases with the dislocation density, this mechanism pro- . 3 2,3 . _
vides the progressive decreaserobn GB's with 6, which, Y=y =iy =T (i) 6(5) =0, (29)
in turn, gives rise to the rapid decreaseJgfd) considered where the prime denotes differentiation with respectzto
in the next section. The angular dependedggd) is thus  =x/&(T) andI'(,i) =V(,i)/ £(T). Equation(29) can be
determined by the domelike dependendg.) characteristic solved exactly for any dependendq).”® The solution
of HTS's. (7n) obtained in Appendix C has the form

Therefore, besides the spacing between the GB disloca-
tions, there are two additional intrinsic length scales associ- 5 , 5 (|7l + no) Nl — v
ated with GB’s. The first one is the sizg=b of the insulat- ()=t (5~ d)tant? 2 .
ing core regions which provide strong barriers for current

flow. The second scale is the width2of a layer of sup- (30
pressedA across GB’s which is determined by the chargeHere .. and ¢, are given by
effects. 2 4 2 2 _ 524
=y (l-yl), ¢n=2i7¢. (3D
lll. CRITICAL CURRENT The first equation in Eq(31) describes the suppression if
Now we calculatel, for a uniform current flowing per- DY uniform current and 7, is defined byy(0)= yo. The
pendicular to GB'’s, by solving the GL equation order parametey, on GB’s satisfies the following equation:
4 P2 2
i2 T L L))
V2t - ¢3—$=V(¢,r), (26) 2E—yo+ 2 g 4 (32

wherey=A/A, is the order parameter normalized to its bulk Where E= % —3y/4. Fori=0, Egs.(27), (31), and (32)

valueA,= A7, i=J/J, is the dimensionless transport cur- Yield I'(¢)=I'1¢, ¢.=1, =0, and

rent density away from GB’sJo:c¢0/16a-rz)\f§ is of the = r

order of the depairing current density, aRd(T) =N\ o/ 7 _ —1 1 1

is the London prt)anetrgtion depth. ¥, and(T) =hio/ V7 70= 12 tanh ( NVitg~ ﬁ) (33
The left-hand side of Eq26) is the usual GL equation in

the presence of uniform currefitand the right-hand side The distribution(x) described by Eqs(30) and (33) is

describes the perturbation caused by GB's, shown in Fig. 6, wheray,=1-T/2y2 atI';<1, and
=2/, for I';>1.
1 1 1 ié(r)—i2 For a qualitative analysis af(x,i) ati>0, it is conve-
NGRS P+ 7 (27)  nient to use an analogy of Eq9) with the equation that
describes the classical motion of a particle of the unit mass

whereio(r) is the normalized current density near GB'’s, and energyE in the potential

where bothig(r) andA(r) are strongly inhomogeneous due

to the local T, suppression and the channel structure of SN

GB'’s. The first term on the right-hand side of HQ7) de- U(y)= P Z’L 2_z,lf2 (34)

scribes the locall, suppression across the GB’s and the

modulation ofA(x,y) along GB’s caused by the NC regions. where s and » play the role of the particle coordinate and

The second term in Eq27) results from the decrease of the time, respectively. The terfi(y) in Eq. (29) describes an

GB current-carrying cross section by the insulating parts otlastic reflection of the particle at=,. We seek a sym-

the NC regions. This gives rise to a local concentration ofmetric trajectoryy(») of the particle which starts moving

j(x,y) in the current channels, which further depresses from pointb with an infinitesimal velocity and/= ., , then
Equation(26) describes the distribution @ (x,y) for the  gets reflected a#= ¢y, and comes back tb with zero ve-

proximity coupled NC regions. The general case df locity. The graphic solution of Eq32) for g is shown in

> &(T) is very complicated; however, the situation simplifies Fig. 7, wherey, corresponds to the intersection points of the
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0.5

FIG. 6. Distributiony( ) near GB’s described by Eq&0) and
(33) for i =0 andI';=10. The coordinate is normalized by(T).

curves—I'?(y)/4 andU(y) —E. As seen from Fig. 7, Eq.
(32) has several roots, of which only those with),/di
<0 are stablé® The only stable solutios in Fig. 7 disap-
pears ai >i., wherei. determines the critical current den-
sity through GB’s which is basically the depairing current
density for the self-consistent distributi@80).

Now we consided’ () which follows from Eq.(27):

T () =T 1gp+T,i% > (35)

The parametel’;, which describes the local suppression of
T. on GB’s, increases witl# due to the domelike depen-

dence of the superconducting coupling constavjtu ) 05 1 15
+ed(6)] in HTS’s on the chemical potential. We do not v
discuss here specific dependenadg:) for various micro- FIG. 7. Graphic solution of E¢32) for J<J, (a) andJ=J, (b).

scopic models published in the literature, focusing instead ofrhe particle of energf moves in the potentidll (), reflecting in
a phenomenological description df(6) which can be ob- the intersection points ob)()—E (solid curve and —'%(y)/4
tained by expanding =\, + (d\,/dn)edy in Eq. (27) for  (dashed curve

smalled. This givesl'; which increases approximately lin-

early with the GB dislocation density: cores and in the layer of thicknessAr; around GB's, where
r; is an effective radius of the NC regions. ThEm can be
2ped, 6 written in the form
| =——=Sin:. (36)
NotcENT 2 ar [ o2 4rv(2—v) a7
2_ - A —_— = 4.
Here u.=|dIn\../du| "t is of the order of the shift ofu £o\7l (d—2r))? EoVr(1-v)?

which causes the S-I transition, and the amplitublg is  Here the ternmd?/(d— 2r;)? describes the local enhancement
defined by|®o(6)|=Dsin(9/2), wheredo(6) is given by  of i2 in the current channels, and
Eq. (21). The nonlinearity of the functio () could be

taken into account by assuming the conventional parabolic sin( 6/2)
dependencd (x) =T[1—a;(x) —a,®3(x)] in Eq. (24), Y Sn02)" (38)
wherea, , are constants. This results in a nonlinear and fairly ¢
cumbersome dependenceldfx [ In(T./To)dxon sihwhich  whered, is the critical angle@.= 2 sin Y(b/4r;) at which the
we do not consider here, since the much simpler 86)  insulating NC regions overlap.
based on the linear expansion ©fw) already provides a For arbitraryl';, I'5, the critical curreni. is determined
good description of the observad( ) (see below. by two cumbersome algebraic equations g(i) andi.. A
The parametel’, in Eq. (35) accounts for the decrease of simpler casel',=0, I';>0 corresponds to a uniform Jo-
the current-carrying cross section of GB’s by the insulatingsephson contact with suppressed order parameter, for which
NC regions. In this case the local current density is enhanced, is determined by a single algebraic equation given in Ap-
in the superconducting channels between the dislocatiopendix C[numerical simulation of Egqs(29) and (35) for
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I',=0 was performed by Campb#&]. Hereafter we focus on
the most interesting casg;>1, I',>0, for which a GB
exhibits weak-link behavior. As follows from E¢36), the
condition I'y>1 does hold, since 13=¢; 7<1 and
edq/N..ue>1 for weak coupling. If";>1, theni®<1, and
so we can puty2=1—i2 and tanR(zy/\2)= 35— 2i? in
Egs. (30) and (31). In this case Eq(32) reduces to(see
Appendix Q:

u*—2ud+2qu+ a?g%=0, (39
Il 2:2
a—m, q—(2+F1F2)F1I , (40

whereu= 2. A graphic analysis of Eq(39) similar to that
in Fig. 7 shows that the stable solutiag(q) exists only
below the critical valueg<q. which determines],. At q
=(. pointss andu in Fig. 7 merge ati=u., and the stable
solution disappears, i>q.. The valueu. can be found by
differentiating Eq. (39) with respect tou, giving g
=Uu¢(3/2—u,). Substituting thigy. into Eg.(39) and solving
a quadratic equation fou.(«), we calculateq.=u.(3/2
—u.) and finally obtainJ; in the following scaling form:

In 1-9a2+ (1430232 ¥

=T , 41
v (1+a)(l-a?) “)
Job/7
SR 42
" 2\2B&sin(6,/2) 42
209 _
BrA(2—v) w3

a= .
27(1—v)%+ Br3(2—v)

Here the dependence afon v and 7 was found, using Egs.
(36), (37, and (40. The control parameter

=2IDbe<I>m/§§,uc)\x, which determines how fagi.(6) de-
creases withy, can be obtained from E¢21):

B eznogln(b/ria)[le(l—Zcr) 2
- [ $o(1—0) '

Notice that forl';>1, the parametdr, enters Eq(41) only

in the combination"4I",, and so even a weak blockage of
current by the NC core region§'§<1) can markedly sup-
pressl., if I'1I',>1. ForI';I',>1, Eq.(4)) yields

2K b o (“4)

343J S2(1—
3o V33, _3, ™ (1-v) , (45)
8r,\yril', v2(2—v)1?
3/3bJy(0)
: ° (46)

- 8%, sin(0:/2)
where Jo(T)=Jo(0)7%2 The suppression al, due to the

current channels manifests itself in the additional factordependences

vI'iI',>1 in Eq. (45), as compared td.~J,/I"; for T',
=0 andI’;>1 (see Appendix € Equation(45) corresponds
to the GL temperature regiof= T, in which J o 7> rapidly
decreases witll and 0. The temperature dependen@kb)
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FIG. 8. Fit with the experimental data on thin filp901] tilt
YBa,Cu0O; bicrystals with=2.7 and#.=30°. Curvess andd
correspond to the andd pairings, respectively. They are related by
Eq. (47), whereJ (6) for the s pairing is given by Eq(41). The
dashed line shows the function expf/6,) with 8,=4°.

dependence/®"" J 72 characteristic of S-N-S contact.

In this model which neglects the Josephson tunneling
through insulating dislocation cored.(6) vanishes atd
=6.. When taking into account the tunneling through the
insulating NC regions af> 6., the critical current remains
finite, though its angular dependentg #) might change as
compared tod<<6,.

IV. COMPARISON WITH EXPERIMENT
AND DISCUSSION

Equation(41), which gives the explicit dependence hf
on # andT, contains three control parametgtsé., andJ,,.
When comparing the calculatet}(6,T) with experiment,
the amplitudel,,, can be eliminated by normalizing;(6) to
its value J.(6y) for a certain misorientation angl#,
=3°-5° at whichJ.(6,) equalsJy in the grains. Smalp
< 6y correspond to a plateau on the obserdgd) curves in
Fig. 8 in the region betweerd, and the base data point
logi=0 at6=0, wherel (6) values through GB'’s are hardly
accessible in resistive experiments. Thus, we are left with
two parameterg3~1 and 6,=20°—-40° which can be ex-
tracted from the best fit with experimental data, which are
usually well described by the exponential dependedge
cexp(—6/6y) with §,=4°-5°. The fact that all uncertain
microscopic parameters near GB'g,, u¢, { k., andi,,
can be combined in a single paramegemarkedly simplifies
the comparison of our model with experiment.

As an illustration, Fig. 8 shows the observéd 6) for
YBa,Cus0; bicrystald at 77 K similar to analogoud,(6)
for other thin fiim and bulk HTS
bicrystals'~>%6 Given the typical scatter of experimental
data, the fit, which corresponds g=2.7 and6.= 30°, turns
out to be quite good. The algebraic functitéfil) describes
well the apparent quasiexponential decreasé.tf) by two

differs from theJ.xr for S-I-S Josephson contacts and isto three orders of magnitude in the regiort®<30°. The

rather consistent with the observed

guadraticcalculated J.(4) also appears to be rather close to the



13 888 A. GUREVICH AND E. A. PASHITSKII 57

straight dashed line in Fig. 8 which correspondsJi¢g)  and low temperatures allows us to assume that our model
=Joexp(— 6/6,) with g,=4°. may give a qualitative description of the Iovregion as

So far we have not specified the symmetry of the ordeivell. Yet there are new features characteristic ofdheave
parameter, since the find(4) dependence is in fact only Symmetry ofA, such as localized zero-energy electron states
weakly sensitive to the symmetry & at #<6.. For in-  atthe S-linterface, which may contribute to the tunnellpg
stance, theJ®(¢) for d-wave pairing is related to the Of Josephson contacts in anisotropic HTS's.

s-waveJ®(6) as follows: When calculatingl,, we assumed uniform current flow
¢ through GB’s which is characteristic of thin film bicrystals of
IJD(9)=cog 203%(9), (47)  thicknessL, much smaller than the Josephson penetration

depth ;= (Co/167°\ J.) Y% wherec is the speed of light
where the factor c626 accounts for the matching condi- and ¢, is the flux quantum. For bulk bicrystals, with,
tions of the superconductingl-wave gap function on >\, the transport current only flows in the peripheral layer
GB's *8 Equation(47) also implies that the gap suppression of thickness\;, and so the total critical current through
on GB'’s is weakly sensitive to the symmetry of the orderGB’s equalsl.=PX\;J;, whereP is the perimeter of the
parameter, as was assumed by Hilgenkaehpl® As fol-  GB's#2 Thus the mean critical current densify=J./A,
lows from Fig. 8, the factor cé€26) only gives a relatively normalized to the cross-sectional arkais given by
small correction to the much stronger decreaselgfd)

caused by the local superconductivity suppression near (Cbodo) V2P
GB's. 3y= CP0d) P 49
Since Eq(41) describes well the observed angular depen- AmAN,

dence J.(#), we can independently check the self-

consistency of the model by comparing the absolute value dEquation (48) corresponds to an isotropic superconductor.
J. given by Eq.(45) with experiment. Likewise, the param- For an anisotropic slab with=LL, and London penetra-
eter B extracted from the fit can be compared with whattion depths\, and\, along they andz axes, respectively,
follows from Eq. (44). For 8=2.7, 6,=30°, b=4 A, ¢  the factorP/A\\, should be replaced by

=13 A, N ,=1500 A, r=1/7, andd=15°, we obtain, from

Eqgs. (45 and (46), that J.~2X10° Alcm?, in agreement p 2 2
with typical observed, values for 001] 15° tilt YBa,Cu;0; — + . (49
thin film bicrystals at 77 K57 In order to evaluatgs, we AN LG Loy

take d=4b=4r;, #=5°,1,=8 A, £,=13 A, 6=0.25,¢ _ ,
=2, andn,=5x10?* cm~3. Then Eq.(44) givesB=2.7 for The apparenﬂp in bulk bicrystals depends on the sample
Nopic=9 meV=T,. For the 15° GB, thel-wave correction geometry and is strongly reduced by the fadR_)rJ/A<1,
in Eq. (47) reduces], by 25%. as lf:zompare.d_to the local,. At the same timeJ,(6)
The critical angled, lies in the region 20°—40°, if,=b  <Jc () exhibits weaker dependendgeexp(-#/26,) than
[see Eq.(13)]. A more accurate estimate fat, is hard to  Jc(0) at 6<6,, where 6, is defined by A;(6)
obtain, not only because the detailed shape of the NC corg Min(Lz,Ly). At 6= 6;,, the slope of Id(6) increases by 2
regions is sensitive to the local parameters near GB’s whiciimes. since, for6>6,, current flows uniformly through
are not well known, but also because depends on the GB'S; and thusl,(6)=1Jc(6). o
atomic structure of the plastically deformed and composi- N our model, the strong decreasel{6) with ¢ is due
tionally different dislocation cores in HTS%-2° However, 10 the excess ion charg@(6) of the GB dislocation struc-
the dependencétl) is only weakly affected by the uncer- turé. This was shown for the simplest anharmonic correction
tainty in 6., if 6 is not too close tof,. The parameteg £€? in an isotropic approximation characterized by the single
which determines the superconductivity suppression oonstant/. For orthorhombic crystalline symmetry, the term
GB's, increases for layered HTS materials which have a low{€? tums into the quadratic invariant,es,+ ey
carrier density, short coherence lendth and large screen- +{1€aa€pp7T £,€2, which is proportional to the elastic en-
ing lengthl, . Notice that the local superconducting proper-ergy density in the Gmeisen approximation. The crystalline
ties on GB'’s are determined not only by atomic displace-anisotropy somewhat complicates the above analysis, but it
ments near GB’s seen by electron microsc&by’but rather ~ does not change the key point th@(6) increases with the
by the resulting variations of the local density of statesGB dislocation density/de«sin(6/2), resulting in a shift of
N(Eg,r) along the GB’s. The variations ®(Eg,r) could the chemical potential and the superconductivity suppression
be revealed by scanning tunnel microscopy, thus providingn GB'’s. This was obtained in the framework of the continu-
very important information on the electron structure of theous elasticity theory which can be used for low-angle GB’s
insulating NC regions and the space charge layer near GB’svith d>b. The discreteness of the crystalline lattice and bro-
In this paper we considered the region of high temperaken atomic bonds along GB’s can affégtfor higher # and,
tures T.— T<T,, in which many uncertainties of micro- in principle, could result in dips iQ(6) for certain symmet-
scopic mechanism of highz superconductivity can be ef- ric misorientations. This might pertain to the non-weak-link
fectively treated by the universal GL equations. Thebehavior observed on some high-angle GB'§! The atomic
description of GB’s at lower temperatures is more modeldisplacements on GB’s which give rise to the nonz@(®)
dependent and requires much more complicated Eilenbergould also be independently obtained by scanning electron
er's or Bogolubov—de Gennes equatiéii* However, the  tunnel microscopy:?° which would enable one to calculate
similarity in J.(6,T) dependences observed on GB’s at highQ(#8) andJ.(8) for high-angle GB’s as well.
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Charge effects in HTS'’s have recently attracted much atean hardly change qualitatively the general quasiexponential
tention due to a possibility to affed. by applying strong dependence af,(8) on 6 which is mostly determined by the
electric fieldE, which can have various applications in su- segments of GB’s with maximurd,. values.
perconducting electronic8.As was shown above, the sig-  Another important issue concerns the dependence
nificant suppression af,(#) can be due to localizeB(x) of  J.(6,H) in the magnetic fieldH, which is determined not
the charged GB dislocation structure which shifts the chemionly by the local current transport through GB'’s, but also by
cal potential on GB’s a® increases. This is similar to the depinning of vortices localized on GB’s. The latter depends
suppression of the order parameter on GB’s by external gaten the change of the core structure of vortices on GB’s and
voltage in HTS transistors, resulting in a significant changeheir magnetic interaction with strongly pinned bulk
of J. of GB’s observed in experimer?.Another indication vortices®® Here the charge effects on GB’s can also essen-
of the importance of the charge effects on GB's follows fromtially contribute to the vortex pinning,
electromigration experimeritswhich showed a noticeable
change of]. across GB’s after applying pulse electric fields ACKNOWLEDGMENTS
at T>T.. This is consistent with our model in which even
subtle changes in the ionic structure on GB’s due to elec- This work was supported by NSF MRSEC Program No.
tromigration can Significanﬂy affe@ and thus]c . DRM 9214707. The authors are grateful to D.C. Larbalestier

Summarizing the obtained resu]ts] we can point out théor his Stimulating interest and helpful discussions. A.G. also
following main factors which can contribute to the laly ~ thanks D.K. Christen and D.O. Welch for useful comments.
values of GB’s in HTS materials.

(1) The proximity of the HTS transition to the metal- APPENDIX A
insulator transition makes the order parameter on the GB’s i i ,
sensitive to small shifts of the chemical potential caused by HEré we give necessary formufégor the elastic strain
local excess ion charge on structural defects screened B§NSOreix- For a single dislocatiors; is given by
electrons(holes. This can result in the strong superconduc-

tivity suppression near the GB amplified by the extended _by[(3—20)x%+(1—20)y’] ~
saddle point singularities in the electron density of states of Exx= 41— o) (x2+y?)2 (AL)
HTS's.

(2) The antiferromagnetic insulating phase in the HTS 2 2
phase diagram manifests itself in the insulating core regions € :by[(l—z(r)y —(1+20)x7] (A2)
caused by large strains near the GB dislocation cores and i 4m(1— o) (X3+y?)?
charge effects on the GB’s. These insulating core regions are
strong barriers for current flow which also significantly en- bx(x2—y?)
hance the effect of the local superconductivity suppression in €xy= — TN (A3)
the current channels at>0. 4m(1-o0)(X*+y)

(3) The suppression of the superconducting coupling cong
stant occurs in the double-charge layer near GB’s comp
rable to the coherence lengé. This results in a large ef-
fective thickness of the GB'’s, which is also specific to HTS'’s

or a symmetric GBg;, can be obtained by replacingby
687—nd and summing up over the integer This yields

’ L ep(1—20)sinq
0 D- ’ - € € =—TT—",
due to their shorg, and largd, . By contrast, GB's in low xxt Eyy cosp—co (A4)
T. superconductors withy <&, are not strong barriers for 9
current flow. o
eppsingsin
. . i (A5)
V. CONCLUDING REMARKS (costp—cogxy)
In this paper we mostly focused on those general features _
of the current transport through low-angle GB’s which are xy=— €u(cosqcosip—1)p (A6)

rather insensitive to the microscopic mechanism of supercon- 2(costp—coxy)?
ductivity, the symmetry of the order parameter, and detailed B _ _
structure of the dislocation core regions. Our model, WhichWhSre_el_Eb/Z(;_ U()jd’ p=2mx/d, andq—Z_ﬂ-y/r?. .
links the dependencé,(4) with normal properties and the smg_ qu.( )han (A4)—(A6),.we ganr;/vrl;cet e equation
phase diagram of HTS'’s, describes well the observed stron-&?(x’y)_0 or the NC core regions in the form
dependence od.(#) on misorientation angle even for the

_ 2n— _ i
simplest ideal GB dislocation structure shown in Fig. 1. The (coshp—cosq)“h=(coshp—cosq)sinq

partial dislocation structure of GB’s in HTSIRef. 3] in- + pol psin gsinh pcos 2p

creases the effective thickness of GB’s, thus making the

charge effects and the suppressiomobn GB’s more pro- —|pl(coshpcosq—1)sin 2¢],
nounced. Macroscopic inhomogeneites of GB’s are due to (A7)

local nonstoichiometry, faceting, and resulting long-range

strain fields which can subdivide GB’s into weakly coupledwhere h=2d(1-0)T,o/Cb(1—20) and po=(C,
segments connected in paraftéThough important for cur- —C,)/(1—20)(C,+ Cyp). Equation(A7) was used to calcu-
rent percolation in polycrystalline HTS!$;' the faceting late the shapes of the NC core regions in Fig. 2.
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For the isotropic strain dependence Tf(eix) (Po=0),

. al ! 2e(ZN,
Eq. (A7) gives the explicit dependencgy) in the form D,(k,G)=— > > j e(k',G")e*
(K2+G?+ N5 ke &'
d 2 1 2 , / /
X= Zcosh*l cos%yﬂLﬁsin%y . (A8) X (k'—k,G'=G)dK'. (B6)

Here an asterisk implies the complex conjugate, afidG)
For the isotropic case, we can also obtain the shape of thg given by Eq.(B3). In the coordinate representation we get
normal NC region(y) for the nonlinear dependendg(e).
Substituting Eqs(A4)—(A6) into Eq. (7) and solving the B ,(x,y)= egZNOZ Jm dkfx dK’
guadratic equatioff (e)=T for €, we get TKeo Gg' J— —w

. | 2wy 2@y 2my ><e“‘X“GY.s(k',G')e(k'—k,e'—c;)
X :Ecosh COS— 4= +——sin— (A9) 2+ G2+ 112 :
The boundary of the dielectric NC region can be obtained by (B7)

replacingr,; by r;". The maximum sizeg,, andy,, of the

The averaged iry potential ®(x) =(®,(x,y)) is given by
NC regions across and along GB’s are given by

the term withG=0 in Eq. (B7), whence

Lod |2mr, (2wr; {ZeNyb?(1—20)2 > @
X =—In——+ +1], (A10) d(x)= dkf dk’
Mo 27 d d %) 47d%(1— 0)%k., g — —o
. d 127”: y gikxg 2
—=—tan’ All .
Im=7 g (ALD (KZ+113)(G'2+K D[ G 2+ (k' —k)?]
The NC regions shrink as decreases. In the linear elasticity (B8)

theory the NC regions touch only #—0 wheny,,—d/2.
However, for smalld the elastic approximation becomes in-
valid, and the shape of the NC regions is determined by

Performing integrations ik andk’, we arrive at Eq(19).

plastic and charge effects near GB’s.

APPENDIX B

The equation foxbq,

V2D, — D, /13=47ZeNyel k., , (B1)

can be solved by the Fourier transformation,

= dk o
d(x,y)=> 2—<D(k,G)e'k"+'Gy, (B2)
G — T

whereG=2mn/d is the reciprocal lattice vector along GB’s.

The Fourier componerd(k,G) equals

_ ibG(1-20)
C2d(1-0) (K24 G?)

e(k,G) (B3)

Therefore,®,(k,G) is given by

2mwiNgZeh(1-20)G

d(1— o) (K2+ G2 (K2+ G2+ N3k,
(B4)

®,(k,G)=

Substituting Eq.(B4) into Eq. (B2) and integrating ovek,
we arrive at Eq(17).
Now we consider the equation fdr,,

V20,0, /153=47ZeNyl e k., , (B5)

from which we obtain

APPENDIX C

We seek for the solutions of EqR9) with the following
boundary conditions:

W ER)=dhe, ' (£0)=0, (CY)
' (+0)=—¢'(=0)=TI(¢o)/2. (C2
From Eq.(29), we obtain the integral of “energy:”
1
SY U =E, (€3
¢2 i2 1114
U(t/f)=7+2—w2—z, (C4)

whereE=U(#.,). The boundary conditiofC2) implies that
the particle moving in the potentiél(#) undergoes an elas-
tic reflection aty= ¢y. Equation(32) for ¢, can be obtained
for any I'(#) by substituting Eq(C2) into Eq. (C3) at ¢
= tho.

Equation (32) has several roots which correspond to
stable €) and unstabley) distributions(7,4q) in Fig. 7.
Due to the symmetryi(n) = (— ), the solutiony(»,I")
for I'>0 can be obtained from the solutiaf( ,0) of Eq.
(29) with I'=0 and the same boundary conditionszat «
by the following rule:

P(1.1) = (| 7+ 70,0). (CH

Here the constang, is chosen to satisfy

o= h(10,0), (Ce)
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where i, is determined by Eq(32).
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Excludingw from Egs.(C10 and Eq.(C11), we obtain a

The valuey,, is determined by the condition of energy quadratic equation fov., whence

conservationU(¢..) =U(¢,,), which enables us to factorize
Eqg. (C3) in the form

W' 2= (P2 — ) 22— Y212y, (%))

2 4 2e
3 Vo 3

Substituting Eq(C12) back into Eq.(C11), we arrive after

Vo= (C12

Equation(C7) automatically provides the correct boundary some algebra at the following equation f@r.

conditionsy' (0)=¢' (=) =0 for (#,0). Heren=0 cor-
responds to the valu¢= ¢, which can be found by com-
paring Eqs.(C3) and (C7). This gives a simple relationship
betweeny,, and i, :

Ya=2i2lyt=2—2y2. (C9

Equation(C7) can easily be integrated to give EO).
Now we turn to Eq(32) which can be written in the form

1 i2\? 1
5 r1¢o+rz—) = (Vo= vh)* (Wi vh). (CY
2( vl v "
Equation(C9) can be solved analytically for two limiting
cased’,=0 andI';>1. ForI',=0, we have

v? w

v— 7 + ; =e,
wherev = y3/(1+T3/4), w=i%/(1+T2/4)%, ande=2E/(1
+F§/4)2. The cubic equatioiC10 has three roots of which
only one withdv/di<0 corresponds to the stablg ). As

(C10

seen from Fig. 7, the stable solution exists only below the

critical currenti<i, at which the pointss and u merge.
Differentiating Eq.(C9) with respect tau, we obtain

1—v—w/v2=0. (C1)

i.=(1-S)(1+29? (C13
where the functiors(i;) is given by
12¢,,(4— 3,
S(i)=1—M (C19

(4+T%)?2

In two limiting cases, Eq9C13) and(C14) yield the depair-
ing current density,=2/3,/3 atI';=0 and

a1

SinceJyx 732 and T 7~ Y2, the critical currentl,« 72 ex-
hibits the temperature dependence of S-N-S Josephson
contacts’®

Now we consider the case;>1 andI',>0 for which
Yo 1 <1, ¢, =1, y2=2i%, andi?<1. Then we can re-
tain only the termy,I"; and all inverse powers af, in Eq.
(C9) which thus becomes

Je r,>1. (C15

3/2

1 i2)?

0

Introducing the dimensionless parametersy, andq given
by Egs.(40) into Eqg.(C16), we arrive at Eq(39).
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