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Interaction of Josephson junction and distant vortex in narrow thin-film superconducting strips
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The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow
thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the
junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who
showed that the vortex may turn the junction into π type. It is shown here that even if the vortex is far away
from the junction, it still changes the 0 junction to a π junction when situated close to the strip edges. Within the
approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology
of the vortex phase which extends to macroscopic distances of superconducting coherence.
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I. INTRODUCTION

It has long been known that Abrikosov vortices in the
vicinity of Josephson junctions affect the junction properties
[1]. Recent experiments with a vortex trapped in one of the
banks of an edge-type planar junction in a thin-film super-
conducting strip showed that the vortex causes an extra phase
difference on the junction that depends on the vortex position
[2]. This effect is strong, in particular when the vortex is close
to the junction; the situation when the junction character is
changed from the conventional “zero”-type behavior to that of
the π junction. In this communication we show that this can
happen even if the vortex is far away from the junction but
close to the strip edges. This is a manifestation of the phase
coherence on macroscopic distances in superconductors and of
the topology of the vortex phase. The effect can be utilized for
manipulating Josephson currents by controlling the far-away
vortex position.

II. PROBLEM

Consider a thin-film strip of a width W with an edge-type
Josephson junction across the strip. The strip is narrow: W �
� = 2λ2/d, where λ is the London penetration depth of the
film material and d is the film thickness. Choose x along the
strip and y across it so that 0 < y < W and the junction is at
x = 0. Let a vortex be pinned at r0 = (x0,y0). The problem is
to evaluate the phase of the vortex along the bank x = +0 of
the junction, see Fig. 1.

The London equation integrated over the film thickness is

c

2π�
hz + curlz g = cφ0

2π�
δ(r − r0), (1)

where hz is the field component normal to the film and
g(x,y) is the sheet current density. Since div g = 0, one
can look for g = curl S ẑ, where S(x,y) is the scalar stream
function. For large �, the first term in Eq. (1) is small and
we have

∇2S = − cφ0

2π�
δ(r − r0). (2)

This is, in fact, a Poisson equation for a linear “charge”
cφ0/8π2� at r0 so that the problem is equivalent to that in
the two-dimensional (2D) electrostatics.

Moreover, the current is expressed either in terms of
the gauge invariant phase ϕ or via the stream function
S: g = −(c�0/4π2�)∇ϕ = curl S z. This relation written in
components shows that (4π2�/c�0)S(r) and ϕ(r) are the real
and imaginary parts of an analytic function.

The sheet current normal to the strip edges y = 0,W

is zero. In addition, one can disregard the Josephson tun-
neling currents relative to those of the vortex, i.e., setting
gx(0,y) = 0 as well. These boundary conditions imply that S

is a constant along the edges of the half-strip; one can choose
this constant as zero. Thus, the problem is formally equivalent
to the 2D problem of the electrostatic potential S due to a linear
charge at r0 on a half-strip with grounded edges, see the upper
panel of Fig. 2.

III. CONFORMAL MAPPING

This problem can be solved by conformal mapping of the
half-strip onto a half-plane for which the electrostatic field is
easily found [3]. The relation

u + iv = −i cosh π (x + iy) (3)

transforms the half-plane u > 0 to the half-strip of our interest
as shown in Fig. 2. In real terms this transformation reads

u = sinh πx sin πy, v = − cosh πx cos πy . (4)

In particular, the vortex position (x0,y0) transforms to the point
(u0,v0):

u0 = sinh πx0 sin πy0 , v0 = − cosh πx0 cos πy0 . (5)

The complex potential F (u,v) for a linear charge (vortex)
at wv = u0 + iv0 at the half-plane u > 0 near the grounded
plane at u = 0 is

F = 2q ln
w − wv

w − wav

= 2q

[
ln

r1

r2
+ i(θ1 − θ2)

]
, (6)

where w = u + iv, and wav = −u0 + i v0 is the position of
the fictitious antivortex.
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FIG. 1. The superconducting thin-film strip with a Josephson
junction at x = 0 and a vortex at (x0,y0). The width W is used as
a unit length.

r1,2 and θ1,2 are the corresponding moduli and phases, see
the lower panel of Fig. 2; q is the linear “charge” cφ0/8π2�.
Clearly,

r1 =
√

(u − u0)2 + (v − v0)2 ,
(7)

r2 =
√

(u + u0)2 + (v − v0)2 ,

and

θ1 − θ2 = tan−1 v − v0

u − u0
− tan−1 v − v0

u + u0
. (8)

The phase in the plane (x,y) is obtained by the substitution of
Eqs. (4) and (5) in Eq. (8).

We are interested in the vortex phase at the junction
bank x = +0, 0 < y < 1, which corresponds to u = +0,

− 1 < v < 1 [4]:

ϕ(+0,y) = −2 tan−1 v − v0

u0

= 2 tan−1 cos πy − cosh πx0 cos πy0

sinh πx0 sin πy0
. (9)
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FIG. 2. Upper panel: The half-strip of the width 1 with a vortex
at (x0,y0). Equations (3) or (4) map the half-strip in the (x,y) plane
onto the half-plane u > 0 (lower panel) with the vortex at (u0,v0); the
points A, B, C, and D on both planes are shown.
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FIG. 3. (Color online) Contribution of a vortex at (x0,1/2) to the
phase at the right bank of the junction (x = +0) as a function of the
coordinate y along the junction (in units of the junction length W ).
The curves are for x0 = 0.01, 0.1, 1. For x0 = 1, this contribution is
close to zero and nearly constant.

For example, for a vortex in the strip middle y0 = 1/2, we
have

ϕ(+0,y) = 2 tan−1 cos πy

sinh πx0
. (10)

Hence, as is seen from Fig. 3, for the vortex close to
the junction x0 → 0, the junction acquires the π character
everywhere except in a narrow region of the fast changing
vortex phase near y0 [5]. It is seen from the figure that the vortex
close to the junction induces the phase difference reminiscent
of that of a Josephson vortex. In the later case, however, the
vortex “core” or the region of the fast phase change is related
to a fixed material parameter, the Josephson penetration depth,
whereas in our case, as Eqs. (9) and (10) show, it is of the order
x0, the vortex-junction separation.

IV. FAR-AWAY VORTEX

It is of interest to examine what happens when the vortex is
far from the junction. As follows from Eq. (9) for large x0, the
vortex contribution to the phase at the junction is a constant
depending on the vortex position y0:

ϕ(+0,y) = π (2y0 − 1) = C . (11)

A remarkable new feature is worth noting: The vortex-
junction separation x0 drops from this result. A straightforward
numerical check shows that the last equation approximates the
full expression (9) for x0 > 2 with an accuracy of less than 1%.
Hence, the term “far-away” can be used reliably for vortices
separated from the junction by more than 2W .

When the vortex is in the strip middle C = 0, i.e., a far-away
vortex does not affect the junction properties. When the vortex
is close to the upper edge of the strip C = π , whereas for
y0 → 0, the lower strip edge C = −π . Hence, when a far-away
vortex approaches the strip edges, we in fact have a π junction.
Moreover, any phase shift from 0 to π on the junction can be
achieved by changing the vortex position y0 from the middle to
the strip edges. This remarkable topological property allows
one to fine-tune the junction behavior by manipulating the
positions of far-away vortices.
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This, at first sight strange effect, can be understood by
examining the current distribution for a vortex near the edge.
When a vortex approaches the edge the current lines are
squeezed so that the component gx along the edge increases
in a shrinking space between the vortex core and the edge.
Formally, gx diverges when y0 → 0, see the Appendix. Hence,
the phase, the gradient of which is proportional to the current,
varies very fast at the part of the edge adjacent to the
vortex. On the other hand, the total phase change along any
contour containing the vortex is 2π . Hence, when the vortex
approaches the edge, nearly all available phase changes of 2π

happen at the edge part adjacent to the vortex, being close to
−π on one side of this part and to +π on the other. On the rest
of the edge, the phase is nearly constant.

V. VORTEX IN A THIN FILM LOOP

Till now we considered an infinite strip with a junction
and a vortex in one, e.g., the right half-strip. The vortex
affects only the phase on the right junction bank. If, however,
one has a closed superconducting thin-film loop, the vortex
affects the phases on both junction banks. We do not have
an exact solution for the vortex currents in this case. Still,
one can use a qualitative argument to describe the situation
as follows.

Consider a straight strip of a finite length L � W with no
junction and a vortex situated far from the ends x = 0,L. In
principle, this problem can be solved by conformal mapping,
but physically the picture should be similar to the half-infinite
strip: According to Eq. (11) the phase at x = 0 will be
−π (1 − 2y0) and at the end x = L it is π (1 − 2y0) (as
mentioned, the coordinate x0 of the vortex does not enter these
contributions).

We can now bend this long, but finite, strip to make a ring
or loop so that the ends at x = 0 and x = L come together to
form a tunnel junction. The strip bending to a ring should have
a small effect if L � W . Then the junction phase difference
will be close to

δϕ = −π (1 − 2y0) − π (1 − 2y0) = −2π + 4πy0 . (12)

2π is irrelevant, hence δϕ = 4πy0. This gives δϕ = π for y0 =
1/4 or 3/4. Thus, when the vortex is near the edges y0 = 0,1
or in the strip middle with y0 = 1/2, its contribution to the
junction phase difference is zero, whereas for the vortex at
y0 = 1/4, 3/4 the junction acquires an extra phase difference
of π . Hence, we expect that in a closed superconducting loop
with a junction, a vortex at large distances from the junction
still affects the junction properties, albeit differently from the
case of infinite straight strips.

VI. DISCUSSION

The effect we describe is due to the topologic properties
of the phase which extend to macroscopic distances of the
superconducting coherence. As such it depends on the sample
geometry. It should be stressed that in our derivation the
connection between the phase difference on the Josephson

junction and the vortex position is based on the assumption
that the thin-film size is small relative to the Pearl length �.
This allows us to disregard the magnetic field associated with
vortex currents and to deal only with the kinetic part of the
London energy. Formally, the problem becomes equivalent
to those of 2D electrostatics and the conformal mapping
technique can be employed. The three-dimensional effects in
bulk materials are more complicated since magnetic fields
have to be taken into account [1], a subject out of the scope of
this paper.

Another property of the mesoscopic system considered here
should be mentioned. Since the Josephson energy is ∝ (1 −
cos δϕ) and the junction phase difference δϕ depends on the
vortex position, the total energy of the system differs from
the sum of the junction energy with no vortex and the vortex
energy with no junction. In other words, there is the junction-
vortex interaction which depends on the vortex position y0

across the strip. Within the model considered, this interaction
is of a purely topologic nature and does not depend on the
junction-vortex separation.
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APPENDIX: VORTEX NEAR STRIP EDGES

According to [6], the magnetic flux crossing the narrow
strip due to a vortex at (0,y0),

�z = φ0

π�

(
y0 ln

1 − y0

y0
− ln(1 − y0)

)
, (A1)

vanishes as −y0 ln y0 when the vortex approaches the edge
y = 0. The question arises whether or not the sheet current
gx(y0 → 0) at this edge vanishes as well.

The current distribution due to the vortex at (0,y0) is given
by the stream function [6]

S = cφ0

4π2�
tanh−1 sin πy sin πy0

cosh πx − cos πy cos πy0
. (A2)

Consider gx = ∂S/∂y at x = 0 and 0 < y < y0:

gx = cφ0

4π�

sin πy0

cos πy − cos πy0
. (A3)

When y0 → 0 and so does y < y0, we obtain

gx ∝ 1

y0 − y
→ ∞ . (A4)

Hence, the phase varies very fast along the part of the edge
adjacent to the vortex.
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