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We obtain the V-I characteristics of the type-II superconductors for thin film by numerically solving
the time-dependent Ginzburg-Landau equation coupled with the Maxwell equation in the two-
dimensional region. We observe a sequence of pulses in the time development of the measured voltage,
leading to intense energy dissipation in superconductors. We show that these voltage pulses are related
to the penetration and annihilation of vortices at the boundary and the annihilation of two merging vor-

tices with opposite sign.

PACS numbers: 74.60.Ge, 74.76.—w

In type-II superconductors, the dissipative mechanism
of the superconducting current carrying state is mainly
attributed to the magnetic quantized flux motion and its
transport properties have been derived from flux dynam-
ics. From the standpoint of the application of type-II
superconductors, it becomes increasingly important to
evaluate the V-I characteristics and its relation to the
vortex dissipation process. The basic dissipative mecha-
nism by vortex motion has been explained by a simple
classical electromagnetic dynamics model [1], the irrever-
sible entropy flow model [2], and the time-dependent
Ginzburg-Landau (TDGL) equation [3,4]. However,
complex dynamics of these vortices is not well understood
due to their strong nonlinear interactions.

Among these methods, the approach using the TDGL
equation is effective in predicting the qualitative proper-
ties of vortex motions in type-II superconductors. Since
the TDGL equation is nonlinear due to the higher order
expansion terms of the order parameter, the theoretical
approach is limited to a perturbative analysis based on
the approximate form of the TDGL equation near the
upper critical field H.,. Therefore, the direct numerical
simulation is the only way to treat rigorously the non-
linear dynamics of flux penetration process and interact-
ing vortices.

Several numerical simulations using the full TDGL
equation coupled with the Maxwell equation have been
reported. Moriarty, Myers, and Rebbi studied the
dynamical interactions of two colliding vortices [5]. Liu,
Mondello, and Goldenfeld and Frahm, Ulah, and Dorsey
studied the dynamics of the superconducting phase by
changing the value of the Ginzburg-Landau (GL) param-
eter k from the type-I to the type-II region [6,7]. Kato,
Enomoto, and Maekawa studied the magnetization pro-
cess [8] and presented the hysteresis curve of magnetiza-
tion. However, there are almost no numerical studies on
the transport properties and vortex dynamics in the pres-
ence of the constant external current and magnetic field
except for the one-dimensional superconducting narrow
filament [9].

Dissipation by vortex motions has been focused on in

the experiments using the narrow strip [10,11]. In a
small sample like this, the averaged voltage and time fluc-
tuating voltage component are dependent on the config-
urations and the number of vortices. For the study of
these mesoscopic phenomena, computer simulation of the
TDGL equation gives a clue to the complex nonlinear dy-
namics of vortices.

In this Letter, the direct simulation of the TDGL equa-
tion has been performed in the two-dimensional region
and the dissipation process of superconducting current by
vortex motions has been studied under the externally ap-
plied constant current and magnetic field. A sequence of
pulses in the measured voltage [12,13] has been explained
by the numerical results of time-dependent behavior of
vortices using the perfect homogeneous superconductor.

In addition, the V-I characteristics under the external
magnetic field were obtained by averaging the time-
dependent voltage.

We employ the macroscopic TDGL equation, which
was derived by Gor’kov and Eliashberg from the micro-
scopic theory [14]:
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In these equations, the time ¢, coordinate vector r, order
parameter A, and vector potential A are rescaled using
4rcE(0)%k?/c?, £(0), A(0), and H.»(0)E(0). Here, ¢ is
the scalar potential, & is the coherence length, A is the
penetration depth, and Re means taking the real part.
For simplicity we use the gauge fixing condition of ¢ =0.
Equations (1) are discretized using the method em-
ployed in [5,7,8]. Here the link variable U;; =exp(iA;;),
where ij represents a pair of nearest lattice sites, is used
and the order parameter and the gauge field are defined
on the lattice site and the link between the sites, respec-
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tively [15]. With the introduction of this link variable,
the discretized equations conserve the gauge invariant
properties which are intrinsic in the continuous equations
(1) [8l.

The two-dimensional rectangular superconducting thin
film sandwiched between the normal conductors (see Fig.
1) is employed as a computational region. Here, for sim-
plicity, the diamagnetization effect for the applied field
and the z-direction dependence of order parameter and
vector potential are neglected. It is assumed that the con-
stant external normal current homogeneously flows into
the superconducting region from one side and flows out to
the other normal conductor.

In the presence of the external applied current, a local
magnetic field for the Maxwell equation and a gauge co-
variant first derivative of the order parameter for the
TDGL equation are required for the boundary conditions.
The local field in the upper and lower boundaries, parallel
to the direction of the external current, is given by the
sum of the current-induced magnetic field H; and the ap-
plied magnetic field H,. The current-induced magnetic
field H; is W,j,/2 for the upper boundary and — W,/2 for
the lower boundary, where j, is the external transport
current density and W is the width of the superconduct-
ing region. This condition implies that the conservation
of the total current on any line perpendicular to the trans-
port current holds in the computational region. The local
magnetic field on inlet and outlet boundaries is taken to
be the sum of the applied magnetic field and the induced
field by the uniform constant external normal current. In
the case of the zero applied magnetic field, the current-
induced magnetic field generates vortices with different
signs. Therefore, vortices appear in the upper computa-
tional region, while antivortices appear in the lower part.
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FIG. 1. The computational region in which the superconduc-
tor is sandwiched between the normal conductors. The upper
and lower boundaries are exposed to a vacuum space.

The first derivatives of the order parameter in all boun-
daries are set to be zero. The initial conditions are that
all order parameters A are equilibrium values, A(T)
=A0)(1 —T/T.)"?2, and all link variables U;; are unity
corresponding to the zero applied field. In the present
simulation, the GL parameter x is assumed to be 2.0, the
critical superconducting transition temperature T, to be
20 K, the measuring temperature 7 to be 10 K, the time
step to be 0.001, and the computational region to be
40£(0) x40£(0).

The external field is gradually applied during the first
140000 steps for the purpose of reaching the steady non-
equilibrium state in a stable manner.

Here, we show the simulation results. First, for the
case of the applied magnetic field of H,=0.2H (10 K)
and the external current of j, =0.034, Figs. 2(a)-2(c)
show snapshots of the typical distribution of the order pa-
rameter, supercurrent, and normal current, respectively,
in the steady flux flow region. The vortex penetration is
found to be initiated at the magnetic field larger than the
lower critical field H.;(10 K). This phenomenon was also
reported in [8] on the magnetization process and was at-
tributed to the surface barrier against vortex nucleation.
From Fig. 2(c) it is seen that the normal current, which
flows into the superconducting region at the inlet bound-
ary, turns into a superconducting current and reappears
at the outlet boundary. It is shown in Fig. 2(c) that the
induced electric field for the normal current distribution,
which is identified as the electric dipole moment field de-
scribed by Bardeen and Stephen [1], appears where the
supercurrent vortex exists. It becomes possible to evalu-
ate the dissipation of superconducting current by study-
ing the electric field generated by this vortex motion.
Figure 3 is the voltage distribution ¥ (x) as a function of
the distance from the inlet of the applied current. This
voltage is defined as the average of the x component of
the local electric field e in the y direction V(x)=V(0)
+W ~“'(fwexdy). It is found that except near the inlet
and outlet boundaries the voltage gradient is nearly zero
below the critical current, where vortices do not appear,
while a finite gradient by vortex motion is observed above
the critical current as shown in Fig. 3.

Figure 4 is the characteristic time development of the
measured voltage in the presence of the applied magnetic
field H,=0.2H.,(10 K) and the external transport
current j, =0.03. It is found that the voltage shows a se-
quence of periodic pulses. With the increase of the trans-
port current, a pulse becomes more sharpened and the in-
terval between pulses is reduced. If the current is further
increased, a sequence of random overlapping pulses ap-
pears. In our numerical results, these voltage pulses are
found to be related to vortex motions. It is observed that
a pulse of voltage with a sharp peak is generated when a
vortex is created or annihilated at the upper and lower
boundaries. These phenomena are caused by the intense
surface current which gives rise to the effective strong
force on vortices near the boundaries. The interval be-
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(a)

FIG. 2. (a) Snapshot of the spatial distribution of the order
parameter for T=10 K (7.=20 K), H,=0.3H., (10 K),
j:=0.034, and 400000 steps. (b) Snapshot of the spatial distri-
bution of the supercurrent. The numerical condition is the
same as that in (a). (c) Snapshot of the spatial distribution of
the normal current. The numerical condition is the same as
that in (a).
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FIG. 3. Snapshot of the measured voltage as a function of

the x direction. The numerical condition is the same as that in
Fig. 2(a).

tween pulses is explained by the convection of vortices
over the computational region. When the applied mag-
netic field is zero or very weak, it is found that there is
another intense dissipative mechanism, in which the vor-
tex and antivortex, generated by the current-induced
magnetic field, merge around the center of the computa-
tional region. It is also found that the attractive interac-
tion between vortices and antivortices enhances the speed
of the vortex motion and thus increases the dissipation.

Figures 5(a) and 5(b) are the distributions for the
super and normal current, respectively, when two vortices
with opposite signs interact. Figure 5(a) shows the in-
stant when two vortex pairs and an isolated vortex in-
teract strongly, while Fig. 5(b) indicates the existence of
the strong dissipation in merging vortex pairs.
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FIG. 4. The time development of the measured voltage for
T=10 K (7. =20 K), H, =0.2H,, (10 K), and j; =0.03.
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FIG. 5. (a) The supercurrent distribution in which a vortex
and an antivortex interact. (b) The normal current distribution
which corresponds to (a).

The voltage-current (V-I) characteristics in the present
simulation have been shown in Fig. 6. Here, the steep
voltage gradient near the inlet and outlet boundaries,
which is seen in Fig. 3, is neglected and only the internal
voltage gradient in the steady state of vortex motions is
calculated. The voltage is averaged for computational
time steps of 360000. This averaged time is sufficiently
long for a single vortex to move from one region bound-
ary to the other. In Fig. 6, the case of H, =0 shows the
V-I characteristics for the flux flow generated only by the
current-induced field. It is found that the abrupt increase
of voltage, followed by an initial slow increase, is caused
by the formation of the train of vortices across the direc-
tion of the external current where a normal conducting
domain prevails in this region. This phenomenon is well
known for the experiments using a narrow strip of the
type-I superconductor. Here, even in type-II supercon-
ductors, it is shown that the growth of the extended nor-
mal domain is observed in the high current region. It is
seen in Fig. 6 that the voltage-current relation becomes
linear as the external magnetic field is increased, H
=0.2,0.4,0.6 H.,(10 K). For the slowly increasing region
in the voltage-current characteristics, a few vortices are
observed. On the other hand, a large number of vortices
dominate the superconducting region and the steady flux
flow appears in the linearly increasing region.

In conclusion, we have developed the numerical tech-
nique using the TDGL and the Maxwell equations in the
presence of the external current and magnetic field. Us-
ing the two-dimensional geometry, we have succeeded in
the simulation of the vortex nucleation and flux flow, and
the evaluation of the V-I characteristics. In addition, the
dynamical properties such as time-dependent voltage are
derived and its intense dissipative mechanisms related to
vortex motions are clarified. We believe that a recent im-
proved mesoscopic experimental measurement will be
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FIG. 6. The V-I characteristics for different external mag-
netic fields [H, =0.0, 0.2, 0.4, and 0.6 H.> (10 K)J.

able to confirm the present results.
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