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Critical Current Densities through Josephson
Junctions in Low Magnetic Fields
Bradley P. Din, Alexander I. Blair, Frank Schoofs, Damian P. Hampshire

Abstract—Understanding the properties of grain boundaries
in polycrystalline superconductors is essential for optimizing
their critical current density. Here, we provide computational
simulations of 2D Josephson junctions (JJs) in low magnetic fields
using time–dependent Ginzburg–Landau theory, since they can be
considered a proxy for a grain boundary between two grains. We
present data for junctions with a wide range of superconducting
electrodes of different Ginzburg–Landau parameter (κ) values
and geometries, as well as normal barriers with different strengths
of pair–breaking — characterized by the thickness of the junction
and the junction condensation parameter (α̃n). We describe our
results using analytic solutions, and hence provide a detailed
description of Josephson junctions in low fields up to that required
for a single fluxon to penetrate the junction.

Index Terms—Josephson Junctions, Critical Currents

I. INTRODUCTION

LOW temperature polycrystalline superconductors are the
enabling technology for many commercial applications,

such as fusion tokamaks [1] operating above 10 T. However,
there is still a huge scope for improving their performance
— for example, the critical current density (Jc) of Nb3Sn
is less than 1% of the depairing current in high magnetic
fields [2]. Understanding the grain boundaries that provide the
flux pinning [3] is pivotal for high-field applications. In this
paper we investigate the properties of superconductor–normal–
superconductor (SNS) 2D Josephson junctions (JJs) [4], [5]
because of their utility as a model for grain boundaries in a
polycrystalline superconductor [6]. We use time–dependent
Ginzburg–Landau (TDGL) simulations to produce the field
dependence of Jc and summarize our results using analytic
solutions. We discuss the insights and limitations of these
solutions. Finally, we outline our future work.

II. CRITICAL CURRENT SOLUTIONS

The starting point for all the simulations presented in this
work are the normalized TDGL equations [7]–[10]. In the zero
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Fig. 1: A SNS Josephson junction with a system aspect ratio,
L/ws, of unity. The superconducting electrode is shown in
yellow and the normal junction in blue.

electric potential gauge, they are written in the form

η
∂ψ̃

∂t̃
=

[
1

m̃n
(∇̃− ıÃ)2 + α̃n − β̃n

∣∣∣ψ̃∣∣∣2] ψ̃, (1)

∂Ã

∂t̃
=− κ2∇̃ × ∇̃ × Ã+ Im

[
ψ̃∗(∇̃− ıÃ)ψ̃

]
, (2)

with the corresponding boundary conditions [11]:(
∇̃× Ã− B̃app

)
× n̂ = 0, (3)(

∇̃− ıÃ
)
ψ̃ · n̂ =

1

b̃
ψ̃. (4)

Spatial dimensions are normalized by the coherence length,
ξs = ℏ/

√−2msαs, time by τ = µ0κ
2ξ2s /ms and supercurrent

densities by J0 = Bc2/µ0ξsκ
2 [12], [13]. The depairing current

density, JD, is given by JD =
(
2/3

√
3
)
J0 [14]. Electric fields

are normalized by ED (the electric field at JD), the order
parameter by the bulk Meissner value, ψ0 =

√
−αs/βs, and

the magnetic field by the upper critical field, Bc2 = ϕ0/2πξ
2
s ,

where ϕ0 is the flux quantum, ϕ0 = h/2e [15]. All other
symbols have their usual definitions [14], [16]. The variation
of m̃n, α̃n and β̃n allows for the spatial variation in the critical
temperature, Tc, within the system, enabling the modeling of
inhomogenous systems such as SNS junctions where the normal
barrier has a lower Tc than the superconducting electrodes
[17]. For all simulations here, we have taken m̃n = 1, β̃n = 1
and the standard dirty limit value for η = 5.79 [7], [18].

For a 2-dimensional SNS junction as shown in Fig. 1, Clem
has provided solutions for Jc(B) for superconducting electrodes
with different aspect ratios using the Josephson relation [5],

Jc(B̃)

Jc(0)
=

1

w̃s

∣∣∣∣∣
∫ w̃s/2

−w̃s/2

sin(∆γ(ỹ)) dỹ

∣∣∣∣∣. (5)
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Fig. 2: Critical current density as a function of applied magnetic
field, compared to Eq. (6), for d = 0ξs, d = dchem = 0.5ξs and
d = deff = 2.55ξs. TDGL parameters are L = ws = 12.0ξs,
α̃n = −50.0, κ = 36, δt = 0.1τ and hx = hy = 0.1ξs.

Here, Jc(0) is the critical current density in zero field, ∆γ is
the gauge invariant phase difference across the junction and
the maximum Josephson current occurs when the constant
∆γ(y = 0) = ±π/2. Clem assumed that the order parameter
recovers instantaneously within the electrode to the bulk
Meissner value, implicitly assuming that the coherence length
of the superconductor was much smaller than any system
dimensions. Recent work in our group [19] has extended Clem’s
work to consider finite coherence length and found the result
for the gauge invariant phase difference for a junction of finite
thickness to be

∆γ(ỹ) = ∆γ(0) + B̃appỹd̃ (6)

+
8B̃app

w̃s

∞∑
n=0

(−1)n+1

k3n
tanh

(
kn
L̃− d̃

2

)
sin (knỹ) ,

where kn = 2π(n + 1/2)/w̃s and the term d̃ in Eq. (6) was
replaced by d̃eff to account for the region in each electrode,
of approximately one coherence length, over which the order
parameter increases up to its bulk value. The effective junction
thickness d̃eff is defined using

d̃eff = d̃chem + d̃corr, (7)

where d̃chem is the chemical thickness of the barrier that
describes the region with the normal state Ginzburg–Landau
parameters (α̃n and β̃n), and d̃corr is the correction term that
accounts for the additional thickness of the barrier. We note
that the effective electrode length is L̃− d̃eff.

In Fig. 2, we provide a comparison between Eq. (6) with
different values of d̃ and TDGL simulations for low Jc junctions
(α̃n = −50.0) with a chemical thickness of dchem ≈ 0.5ξs.
These results are consistent with previous results [19] that
found dcorr ≈ 2ξs provides the best fit.

III. COMPUTATIONAL METHODOLOGY

The computational algorithm used in these simulations solves
the TDGL equations in the zero electric potential gauge [7],
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Fig. 3: A snapshot of normalized order parameter magnitude
(top) and supercurrent density (bottom) in a SNS junction at
Japp = Jc. TDGL parameters are L = ws = 12.0ξs, dchem =
0.5ξs, α̃n = −1.0, κ = 40.0, δt = 0.5τ and hx = hy = 0.1ξs.

[17], [20] and has been discussed extensively in previous
publications [9], [13], [19]. In brief, the TDGL equations are
solved using a finite–difference method based on the method
of link variables [21], which ensures gauge invariance of the
system. The 2-dimensional system is discretized into a set
of regular nodes on a grid in units of the coherence length,
determined by the grid spacing in each of the x and y directions,
h̃x and h̃y respectively. The variables {ψ̃, Ã} are continually
iterated until convergence to within a specified tolerance (set
to 10−7 within this work). For evolving this set of variables
forward in time, we use a modified Crank–Nicolson scheme
[22], using a fixed time step, δt in units of τ . We have used
periodic boundary conditions at the boundaries of the system
in the x-direction, and insulating boundary conditions in the
y-direction using a ghost point method [23].

To obtain a value for Jc, we increase the transport current
at a specified ramp rate and monitor the average electric field
in the x direction within the system, ⟨Ẽx⟩ [8]. We apply
Ekin’s offset criterion method [24]; if ⟨Ẽx⟩ exceeds a fixed
critical electric field Ẽc, then the system is held at this applied
current value for a fixed duration to allow transient effects to
equilibriate. If the electric field persists beyond the duration of
the hold time, then we interpret this as persistent fluxon motion
— the tangent to the Ẽ(J̃) is extrapolated to zero electric field
and the critical current density, J̃c, is taken at this point. The
system is first initialized in the Meissner state (ψ̃ = 1, B̃ = 0)
for reproducibility of simulations. In this work, the electric
field criterion is set at Ẽc = 10−6 and the hold time is set at
6× 104τ .

The outputs from our methodology include the spatial
dependence of the order parameter and the magnetic vector
potential. These provide visualizations of useful physical
phenomena, such as fluxon motion within the junction and the
associated changes in the supercurrents. A snapshot of these
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Fig. 4: Critical current density as a function of applied magnetic
field for a range of α̃n values in a SNS junction system. TDGL
parameters are κ = 36, L = ws = 12.0ξs, dchem = 0.5ξs. Red
crosses denote the minima of Jc.

outputs for a typical SNS system is shown in Fig. 3. We can see
as expected: despite the transport critical current density being
only 0.4JD, the magnitude of the local supercurrent densities
can be as large as 0.8JD; the presence of a fluxon within the
junction causes large additional local current flows; the fluxon
itself is distorted within the junction, extending into a region
much wider than the chemical thickness, with similarities to
the ‘pancake’ vortices first discussed by Clem [25].

IV. RESULTS

Here we are particularly interested in the first node, or
minima, in Jc because it allows a precise characterization of the
effective thickness of the normal barrier. We have completed
Jc(B) simulations for JJs with a wide range of electrodes
of different κ values and for different strengths of the pair–
breaking in the normal barriers (i.e. two different thicknesses
and different junction condensation parameter values, α̃n). De
Gennes has shown that increasing |α̃n| decreases the coherence
length in the normal region [11]. Here we have set hx =
hy = 0.1ξs since too large of a grid size can lead to error
[26]. Junctions with very weak coupling (i.e. high |α̃n|) also
require small timesteps for accurate convergence. We have
used δt = 0.02τ for data with α̃n = −50.0 or −100.0, and
δt = 0.1τ for all other values of α̃n.

In Fig 4, we show the results for a system where L =
ws = 12.0ξs and the chemical junction thickness is set to
be dchem = 0.5ξs. The red crosses are located at minima of
Jc; we denote the field for the first minimum to be Bmin. As
α̃n → −∞, Bmin decreases to an asymptotic value at high κ,
consistent with flux entering the junction more easily, increased
pair–breaking within the junction and the reduction in the zero–
field critical current density, Jc(0).

In Fig. 5, we compare the zero–field critical current density
of our TDGL simulations to analytic solutions from Fink [27]
that were derived in the very narrow regime (ws ≪ ξs) for thick,
weakly–coupled junctions. Agreement between these analytic
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Fig. 5: Zero–field critical current density as a function of α̃n,
for a range of κ values, for two SNS junctions: dchem = 0.5ξs
are circles (solid lines) and dchem = 1.0ξs are squares (dashed–
dotted lines). Both geometries have L = ws = 12.0ξs. Green
lines are Fink’s very narrow solutions [27] for each dchem.
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Fig. 6: Bmin as a function of α̃n, for a range of κ values. The
symbols associated with each geometry are the same as Fig. 5.

solutions and TDGL computation has previously been verified
for very narrow junctions, and found to extend to narrow
junctions [19]. Here we compare Fink’s analytic solutions to
data for narrow junctions with variable κ and two chemical
junction thicknesses. Fink’s solutions remain valid for high
κ and very large |α̃n|, but at low κ, when the junction width
approaches the wide junction limit (ws ≫ ξs, λs, where λs
is the penetration depth), the agreement does not hold. We
attribute this low κ result to the current density flow along the
SNS junction no longer being uniform across its width.

Fig. 6 shows Bmin as a function of α̃n. We have computation-
ally verified that for the dchem = 0.5ξs, L = ws = 12.0ξs geom-
etry, the asymptotic value of Bmin for κ = 36 and α̃n = −100.0
differs from that of α̃n = −250.0 or α̃n = −500.0 by less than
1%. The values of Bmin (and consequently deff) change with κ.

We can find an analytic expression for Bmin in terms of deff



EUCAS2021-260 4

0 1 2 3 4 5 6

d/ξs

0.8

1.0

1.2

1.4

1.6

1.8

B
m

in
w

2 s
/φ

0
Aspect: 0.75

Aspect: 1.0

Aspect: 1.25

Aspect: 1.5

Aspect: 2.0

Aspect: 3.0

Aspect: 6.0

Large Aspect

Fig. 7: Bmin as a function of d/ξs, for a range of system aspect
ratios (L/ws), obtained from Eq. (11). The large aspect ratio
limit solution is given by Eq. (10).

using Eqs. (5) and (6) where

Bmin =
ϕ0π

πdeffws +
16π
ws

∑∞
n=0

tanh[kn(L−deff)/2]
k3
n

. (8)

In the extreme cases where the aspect ratio is very small
(L/ws ≪ 1) or very large (L/ws → ∞), we can obtain the
relevant asymptotic values. For the very small (large) aspect
ratio, we define BS

min (BL
min) as

BS
min =

ϕ0
wsL

, (9)

BL
min =

0.8173ϕ0π
3

π3deffws + 14w2
s ζ(3)

, (10)

respectively. We note that for the large aspect ratio limit, we
have added the factor of 0.8173, taken from Clem’s work [5],
to account more precisely for the magnetic field at the first
minima of the critical current density. Following Clem, we
use his interpolating function for Bmin, between high and low
aspect ratios, of the form

Bmin =
BL

min

tanh
(
BL

min/B
S
min

) , (11)

and have plotted it in Fig. 7. We have separately verified that
the small aspect ratio limit (Eq. (9)) is obtained within 1% for
L/ws < 0.1.

Using the Bmin values from our TDGL simulations, we
calculated the corresponding deff values as a function of α̃n
using Eq. (6) as shown in Fig. 8. Hence, we conclude from
the results here, that for large κ, large negative α̃n and aspect
ratio for the superconducting electrode of about unity, Eq. (7)
can be written

deff ≈ dchem + (2.0± 0.1)ξs, (12)

consistent with previous results [19] and confirmed by the
thicker junction data in the high κ limit, where dchem = 1.0ξs,
L = ws = 12.0ξs. Fig. 8 also demonstrates that deff reduces
significantly when either κ or |α̃n| is small.
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the same as Fig. 5.

V. DISCUSSION AND CONCLUSIONS

In this work, we performed TDGL simulations for 2D Joseph-
son junctions and found Fink’s zero–field analytic solutions
derived for very narrow junctions successfully describes our
TDGL data across the entire α̃n range at high values of κ for
junctions with aspect ratios around unity, but breaks down at
low values of κ. We have confirmed the relationship between
the chemical junction thickness and the effective junction
thickness in the high κ, high |α̃n| limit (Eq. (12)) found
previously and extended its validity to include a thicker junction
barrier. Our results suggest the validity cannot be extended to
wide junctions. We have also extended Clem’s interpolation
function to include deff.

Future work will include developing our analytic expressions
further for a wider range of depairing strength in the junction
(i.e. α̃n and dchem), and extending these solutions to finite κ.
We will investigate larger systems (e.g. L = ws = 24.0ξs
or 72.0ξs) to better understand the wide junction limit and
the κ-dependence of the data shown in this work. We also
intend to extend this work to high fields so we can make direct
comparisons with high–field experimental data. To understand
high–field behavior properly, we need to consider the presence
of many fluxons both inside the junction (grain boundaries)
and also inside the bulk electrodes (grains).
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