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I. INTRODUCTION AND BASIC FORMULAS

In this paper, I wish to describe the clarification
which has taken place in our ideas on the nature and
behavior of tunneling supercurrents since the orig-
inal work was done on the subject, and to mention
some recent experimental work. Tunneling super-
currents originally emerged out of a complicated cal-
culation of tunneling currents as terms which did
not go to zero when the voltage across the barrier
was put equal to zero.! It is now clear, however, that
they are of essentially the same nature as the familiar
kind of supercurrent. The link between the two is
provided by the Ginzburg-Landau theory,? and I
shall first give a brief summary of this theory.

The first attempts to describe the superconducting
phase transition, such as the Gorter—-Casimir two-
fluid model,® used a real order parameter, the density
of superconducting electrons. These theories are
based on an assumed dependence of the free energy
on the order parameter, whose value is found by
minimizing the free energy with respect to it. This
type of theory explains the existence of a critical
magnetic field and the second order phase transition
in zero field, but cannot, without additional assump-
tions, attempt to give a description of normal-super-
conducting phase boundaries or the penetration re-
gion in a magnetic field. The Ginzburg-Landau
theory describes these in a natural way. Unlike the
two-fluid model it uses a complex order parameter ¢,
interpreted as the wave function of the superconduct-
ing electrons. Thus [y¢|? takes the place of the density
of superconducting electrons in the two-fluid model.
The other new feature is a term in the free energy
representing the kinetic energy of the superconduct-
ing electrons; this is where the complex nature of
enters. The kinetic energy term involves both ¢ and
the electromagnetic vector potential, and therefore
couples together the electrons and the magnetic field.
It thus turns out to be a natural consequence of the
Ginzburg-Landau theory that the thermodynam-

1B. D. Josephson, Phys. Letters 1, 251 (1962). Owing to a
computational error the value of j; given in this paper is in-
correct. For the correct value see Ref. 24.

2V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor.
Fiz. 20, 1064 (1950).

3 See, for example, D. Shoenberg, Superconductivity (Cam-
bridge University Press, 1960), Chaps. 3 and 6.

ically stable state of a superconductor in a magnetic
field is a current carrying one. Since the Ginzburg—
Landau theory, microscopic theories of supercon-
ductivity have been developed, giving an explana-
tion of its assumptions in so far as they apply,* but
as they do not add anything essentially new to the
main discussion we shall ignore them except in Sec. V.

After these preliminaries, let us return to tunneling
between superconductors. In the first place let us
consider a system consisting of two superconductors
completely isolated from each other. Like the
Schrodinger equation, the Ginzburg-Landau equa-
tions have the feature that from any given solution
others may be obtained by changing the phase of .
The complete isolation of our superconductors from
each other implies that it must be possible to alter
the phases of ¥ in each independently. On the other
hand in a single (simply connected) superconductor
under given external conditions ¢ is completely de-
termined apart from a phase factor, so that all phase
differences are fixed. If now we imagine the two
superconductors to be separated by a barrier of
normal metal or insulator whose thickness is grad-
ually reduced to zero, it is reasonable to suppose that
the properties of the system go over continuously
from those of two isolated superconductors to those
of a single superconductor. This must happen in the
following way: the free energy of the system must
contain a term which depends on the relative phases
of the values of ¥ on the two sides of the barrier
and increases in magnitude as the barrier becomes
thinner. When the barrier is thick the coupling en-
ergy is very small and the phases are free to change
arbitrarily, but once the coupling energy becomes
large compared with k7, the phases become effec-
tively locked together. We assume the coupling free
energy to be expressible as an integral over the
barrier:

F = /f(P)dS, (1.1)
S

where f(P) depends only on the nature of the barrier

and the local values of ¥ on the two sides of it (and

possibly on temperature). Throughout this paper we

4 L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958),
[English transl.: Soviet Phys.—JETP 7, 505 (1958)] and Zh.
Eksperim. i Teor. Fiz. 36, 1918 (1959) [English transl.: Soviet
Phys.—JETP 9, 1364 (1959)].
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shall be concerned only with small fields and currents,
which do not appreciably affect the density of super-
conducting electrons |¢|?, and so it will be sufficient
to regard the surface free energy as a function of ¢,
the difference between the phases of ¥ on the two
sides of the barrier.’

Associated with the surface coupling energy is the
possibility of supercurrents through the barrier. In
fact the two are intimately related:

(1.2)

where j is the supercurrent through unit area of
barrier and Gaussian units are used. Equation (1.2)
is reminiscent of some formulas of classical thermo-
dynamics, and can indeed be proved by classical
thermodynamical means® Anderson’ has given a
quantum mechanical derivation. Owing to the defini-
tion of ¢ as a phase difference, j and f must clearly be
periodic functions of ¢. The microscopic theory!
shows that, in the limit of weak coupling, only first
harmonics enter:

j=ssné, (1.3)
j= - gke J1 cos ¢ - constant . (1.4)

(1.3) and (1.4) are good approximations for the
barriers normally used in tunneling experiments.

It is sometimes convenient to use a gauge in which
there is a large component of vector potential in the
barrier normal to it; in this case, a gauge term,

— (2¢/hc) _/;2A-ds

must be added to ¢, the integral being along a curve
joining the superconductors.?

II. EQUILIBRIUM PROPERTIES

In this section, we shall assume that the coupling
across the barrier is sufficiently strong to maintain a
definite phase relationship between the two sides.’
There is reason to believe that in this case the tunnel-
ing supercurrents are nondissipative and of essen-
tially the same nature as ordinary supercurrents. For
example, in a closed ring containing a barrier there is

5 Sign conventions: if the sides of the barrier are labeled 1
and 2 and n is a unit vector pointing from 1 to 2 then ¢ = argy»
—argy,j=jn, V=V — V.

6 The proof is similar to that used to find the energy stored
in an induector, and is based on Eq. (3.2).

7P. W. Anderson, Proceedings of the Ravello Spring School,
1963 (to be published).

8 P. W. Anderson and J. M. Rowell, Phys. Rev. Letters 10,
230 (1963).

9 This will be discussed in more detail in Sec. IV.
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a set of different solutions to the modified Ginzburg—
Landau equations, in which the phase of ¥ changes
by different multiples of 27 in going round the ring.
Jumping from one solution to the other involves over-
coming the coupling energy, and if this is impossible
the higher energy solutions, which are current carry-
ing ones, will be metastable.

Magnetic fields can pass between two supercon-
ductors separated by a barrier, in the form of a thin
sheet of flux penetrating a short distance into the
superconductors in the usual way. In the presence of
flux ¢ varies over the barrier in a way determined by
the following rule.”® Consider two points P and Q on
opposite sides of the barrier (and flux sheet) joined
by two curves crossing the barrier at different points
A and B. The difference between the phases of ¢ at
A and B is proportional to the flux between the two
curves, one flux quantum hc/2e corresponding to a
phase difference of 27. This effect is closely related
to the one predicted by Ehrenberg and Siday" for
interference between electron beams in the presence
of a magnetic field.

In differential form we may write

grad ¢ = 2% (H x n). @.1)
he
Here H is the field in the barrier, n is a unit vector
normal to the barrier, and d is the effective thickness
of the sheet of flux:

d=7\1+)\2+t,

where \i, A, are the penetration depths on the two
sides, and ¢ is the barrier thickness." )

Combining (2.1) and (1.3) and Maxwell’s equa-
tions, we obtain 13

(2.2)

Vo = (\)*sing, 2.3)

where
N = (hé’/8mejd)* . (2.4)

Here V2 is a two-dimensional operator. N’ is typically
of the order of 1 mm. and has the significance of a
penetration depth, as can be seen by putting
sin ¢ ~ ¢ in (2.3).

The detailed behavior of coupled superconductors
depends on the transverse dimensions of the barrier

10 P, W. Anderson (private communication).

11 W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. (London)
B62, 8 (1949). In the present case the flux quantum is half that
in the case of interference of electron beams, since electron
pairs are involved (Sec. III).

12 Note that d is not simply the barrier thickness as has
sometimes been supposed.

1BR. A. Ferrell and R. E. Prange, Phys. Rev. Letters 10,
479 (1963).
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relative to \’. Barriers large compared with A’ behave
in a similar manner to superconductors of the second
kind.** In weak magnetic fields diamagnetic currents
screen out the field from the barrier except at points
within a distance of the order of N’ from the edge. At
a critical field”

H. = (32hj/med)? (2.5)

of the order of 1 G, a second order phase transition
occurs and quantized flux lines start to penetrate
into the barrier, their separation decreasing as the
field is increased. This is the ideal thermodynamic
behavior; in practice it would appear that hysteresis
may occur, owing to the attachment of flux lines to
the edge of the barrier.”® In the case considered by
Ferrell and Prange,® a field of 1 = times the critical
field H. is required before flux starts penetrating.
Owing to screening, when a supercurrent is passed
through a barrier it is normally all carried in the
neighborhood of the edges.® Ferrell and Prange®
have shown that the effective current-carrying width
of a barrier is 2\’. However, if a barrier is inhomog-
eneous, it may be possible for current to be carried
by its interior, owing to flux pinning, just as in type
II superconductors.’s:*”

The behavior of a barrier small compared with \’
is somewhat simpler. Just as with very thin films,
the magnetic field inside such a barrier is almost
constant. The main feature of interest is the field de-
pendence of the critical supercurrent. As we have
seen, the effect of a field is to cause ¢ to vary in phase
over the barrier. Therefore, in view of (1.3), in a
sufficiently strong field the barrier is split up into
regions in which the current through it has opposite
signs, and the maximum value of the total supercur-
rent is thus greatly reduced. The field dependence of
the critical current is given by a Fraunhofer diffrac-
tion pattern formula for an aperture of the same
shape as the barrier (and transmission amplitude
71).*® For a rectangular barrier with the field along a
side, one obtains

sin (H / H, o)
H/H,
where H,/2 is the field for which the barrier encloses

one flux quantum hc/2e. Behavior of this type has
been observed by Rowell,”® and this experiment, to-

I, « ) (2.6)

M4 A, A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442
(1957) [English transl.: Soviet Phys.—JETP 5, 1174 (1957)].

15 B. D. Josephson (unpublished work).

16 P. W. Anderson, Phys. Rev. Letters 9, 309 (1962).

17 For example, a superconducting bridge across the barrier
would have this effect, and a region with a high local value of f
would behave similarly.

18 J. M. Rowell, Phys. Rev. Letters 11, 200 (1963).

gether with the previous one of Anderson and Row-
ell,® indicates strongly that the currents observed are
indeed tunneling through the barrier and not going
through isolated metallic bridges.

III. NONEQUILIBRIUM PROPERTIES

In dealing with the nonequilibrium properties of
coupled superconductors, the first requirement is to
find a formula for the time dependence of ¢. Here 1
give a not very rigorous derivation, which serves,
however, to introduce the important topic of the
interaction of tunneling supercurrents with photons.*®

So far we have been using what may be called the
wave picture of a superconductor—we have been
dealing with ¢, the wave function of the supercon-
ducting electrons. From the microscopic theory of
superconductivity it is known that the particles as-
sociated with the wave function are bound pairs of
electrons called Cooper pairs.*?* In some ways a
superconductor can be thought of as a Bose—Einstein
condensafion of Cooper pairs. The supercurrents we
have been discussing may be viewed as Cooper pairs
tunneling through the barrier [Fig. 1(a)]. If there is a

E
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Fig. 1. Quasi-particle picture of tunneling supercurrents.
(a) de supercurrents at zero voltage. (b) ac supercurrents at
nonzero voltage, giving rise to the emission of photons. Corre-
sponding to each emitted photon a Cooper pair tunnels across
the barrier in the direction of the applied voltage, conserva-
tion of energy requiring that 7w = 2¢V. In the presence of a
microwave field this process and its reverse can occur, giving
rise to photon-induced supercurrents.

nonzero potential difference V between the two sides
of the barrier, Cooper pairs on different sides of the
barrier have energies differing by AE = 2¢V (the
charge of a pair being 2¢). Tunneling through the
barrier can then take place only as a virtual process.
We know from elementary quantum mechanics that
in such a system there are oscillating currents at a
frequency » = AE/h, i.e.,

v = 2V/h. (3.1)

When the interaction between the oscillating cur-
rents and the electromagnetic field is taken into ac-
count, one finds that real processes can take place,

19 A more rigorous proof is given in reference 1. An alterna-
tive proof based on gauge invariance has been given by Ander-
son (reference 7).

20 L. N. Cooper, Phys. Rev. 104, 1189 (1956).



energy being conserved by the emission of a photon
[Fig. 1(b)]. In this case the radiation is coherent,
since every photon comes from an identical process.
Taking into account the fact that the oscillating
currents arise from changes in ¢, we see that

¢ = 2m = 2eV/h. (3.2)

Now let us consider what happens if we apply to
the barrier radiation of the same frequency as the
oscillating supercurrents. When two oscillating sys-
tems are coupled together, energy can be transferred
in either direction, depending on the phase relation-
ships. The energy transfer process in this case is Fig.
1(b), or the reverse process.?* Therefore, in the pres-
ence of microwave radiation dc¢ supercurrents (i.e.
the transfer of Cooper pairs across the barrier) can
occur provided the potential difference is such that
energy can be conserved by absorption or stimulated
emission of a photon (multiphoton processes can also
occur). This process is characterized by the appear-
ance of constant voltage regions in the I-V character-
istic, and this has recently been observed by Shapiro,?
who made the interesting observation that for par-
ticular values of microwave power the specimen
would spontaneously jump on to such a constant
voltage region. Shapiro’s specimen is therefore be-
having as an ideal zero-impedance voltage source,
powered by the microwave field.

For the supercurrent—photon coupling to be strong
it is necessary that both the supercurrents and the
electric field in the barrier produced by the micro-
wave radiation should be in phase all over the barrier.
Hence small barriers are favorable to the observa-
tion of the effect.

I shall now pass on to a different type of non-
equilibrium effect. This concerns what happens
when one applies rf fields to a system in which both
sides of the barrier are originally at the same poten-
tial. If the rf fields are small enough they do not
break up phase coherence across the barrier but
merely cause oscillations in phase. As may be seen
by taking the time derivative of (1.3) and using (3.2),
the barrier behaves with respect to supercurrents
exactly like an inductance Lo sec ¢ per unit area,
where

Lo = h/26j1 . (3.3)

One must also take into account the capacitance C
per unit area (as indeed one must to treat correctly

21 Similar processes for tunneling quasi-particles have been
observed by A. H. Dayem and R. J. Martin [Phys. Rev.
Letters 8, 246 (1962)] and discussed theoretically by P. K.
Tien and J. P. Gordon [Phys. Rev. 129, 647 (1963)].

22 S, Shapiro, Phys. Rev. Letters 11, 80 (1963).
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the earlier work in this section). The following dis-
persion equation is obtained," assuming de fields and

currents to be absent.?®

(w/wo)’ = (BN')* + 1, (3.4)

where

wo = (L0)7H, (3.5)
which corresponds to frequencies of a few Ge/sec.
When o > wo, traveling waves localized in the
neighborhood of the barrier can be propagated along
it. These could be excited by applying alternating
voltages across the barrier at its edge. When v < wo,
k is imaginary, and disturbances excited in this man-
ner decay exponentially with distance from the edge,
just as in the dc limit considered in Sec. II. The
impedance across unit length of the edge of a semi-
infinite barrier is 4wdw/kc® (inductive when k is
imaginary),” which is normally very small (<107®
Q cm) except when w ~ wo, when the impedance be-
comes theoretically infinite. When w = wo, & = 0 and
the disturbance is a type of plasma oscillation, with
the current and electric field normal to the barrier
and the magnetic field absent. The power that could
be transmitted along a barrier without breaking up
phase coherence should be sufficient to permit direct
demonstration of the existence of the cutoff fre-
quency wo.

A final point of interest in connection with this
type of effect concerns quasi-particle currents. Ac-
cording to the microscopic theory,' the barrier con-
ductivity which determines these is phase dependent:

g =00+ 01C08¢. (3.6)
The phase dependent term does not affect the de
I-V characteristics of the barrier because cos ¢ av-
erages out to zero, but it can affect the quasi-particle
damping of waves of the type just considered.

IV. THERMAL AND ZERO-POINT FLUCTUATIONS

For very small barriers the only mode of oscilla-
tion important in producing fluctuations in ¢ is the
k = 0, w = wo mode of Sec. ITI, in which the oscilla-
tions in ¢ are in phase all over the barrier. Assuming
fluctuations in ¢ are small the oscillations can be as-
sumed to be simple harmonic, and we obtain for the
mean square deviation of ¢:

_-_—2 260)0 1 ]_

(A9)" = HA [_5 + exp (hwo/kT) — 1:| !
where A is the area of the barrier. As the barrier is
made larger, however, modes with & % 0 become im-~
portant and eventually (A¢)® must become inde-

(4.1)

23 Tn general both j; and N’ may be frequency dependent, the
latter through the frequency dependence of A.
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pendent of A. Clearly in order to observe effects
which depend on having phase coherence. over the
barrier, one must have (A¢)? < 1. This sets a lower
limit to the value of 7i. As pointed out by Anderson
and Rowell,® the temperature seen by the barrier is
not necessarily the cryostat temperature, since
thermal noise is transmitted to the specimen down
the leads to the cryostat from room temperature
circuitry. Since this is at a temperature of the order
of a hundred times greater, it is clearly desirable to
choose conditions so that this effect is minimized.
To see the conditions necessary for this, consider the
idealized circuit of Fig. 2. The specimen is repre-

Fic. 2. Simplified circuit diagram
illustrating the effects of electrical
noise transmitted down the leads to
the cryostat.

sented by a damped tuned circuit and the room
temperature source by a noise voltage Vy in series
with a resistor R;. It is seen that the object of reduc-
ing the current through L can be achieved by

(i) increasing the source impedance R;

(i1) inserting an electrical filter cooled to liquid
helium temperature in the leads to the specimen. In
particular, frequencies of we or above where there
may be high @ resonances should be removed;

(iii) if possible, damping out the resonances by
reducing R, i.e., connecting a normal metal shunt
across the barrier.

V. MICROSCOPIC THEORY

Various methods have been used to calculate j
from basic theory.!”?*? Many of these use the tun-
neling Hamiltonian method of Cohen et al?*® The
simplest method is that of Anderson,” who uses
statistical mechanical perturbation theory to cal-
culate f and then derives 7; from (1.2). Formulas for
71 have been given for absolute zero by Anderson’
and calculated numerically for finite temperatures by
Ambegaokar and Baratoff.?* This method cannot be
used for nonequilibrium processes, which can be
dealt with by adiabatic perturbation theory.! An
important result of the microscopic theory is that j;
is proportional to the tunneling probability for
quasi-particles, so that tunneling supercurrents are
similar in magnitude to quasi-particle currents at

2V. Ambegaokar and A. Baratoff, Phys. Rev. Letters 10,
486 (1963) and 11, 104 (1963) (erratum).

25 P. G. de Gennes, Phys. Letters 5, 22 (1963).

26 M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.
Letters 8, 316 (1962).

voltages of the order of the energy gap.

Objections have been raised against the tunneling
Hamiltonian method on the grounds that it treats
the barrier as a mathematical plane and ignores
events taking place in it.¥ A method which avoids
this difficulty is to describe propagation through the
barrier by Green’s functions.'s*> This method has the
additional advantages that it shows precisely the
conditions necessary for coupling to occur, it indi-
cates the relation between supercurrents through
barriers and the usual kind of supercurrent, and it
is not restricted to insulating barriers. Gor’kov’s
theory* allows one to express the current density in a
superconductor as an expression in powers of ¢ and
¢*. The lowest order term has the form

i@ = [Raee @ a .

If Y is assumed to have a linear variation near r, this
reduces to the Ginzburg-Landau equations. A more
appropriate approximation for barriers is to assume
that ¢ is slowly varying on each side of the barrier
but changes suddenly as one crosses the barrier; this
assumption leads to Eq. (1.3).

An important feature of (5.1) is that the relation
between j and ¢ is nonlocal. This leads to quali-
tatively different results from those of Bardeen,”
who assumed a local relation. Detailed consideration
of (5.1) shows that coupling is not dependent on an
interaction in the barrier, but on the ability of elec-
trons to propagate elastically through the barrier (as
described by the single-electron Green’s function).
It is further necessary that time-reversal symmetry
should apply to the propagation process. Finally,
from (5.1) one can deduce that repulsive interactions
in the barrier are, as one might expect, detrimental
to coupling.

(5.1)

VI. CONCLUSION

With the exception of the last section, my aim in
this paper has been to show that just as in the days
before the BCS theory one knew a great deal about
the behavior of superconductors purely on the basis
of phenomenological theories, one can similarly pre-
dict many varied types of behavior of barriers be-
tween superconductors on the basis of a few simple
equations based on straightforward assumptions.
These equations can be justified by the microscopic
theory, and, as far as present experimental evidence
goes, seem to give a substantially correct description
of events.

27 J. Bardeen (private communication).

28 J. Bardeen, Phys. Rev. Letters 6, 57 (1961) and 9, 147
(1962).



