

Durham University Superconductivity Group

Overview of measurements and experimental facilities

Prof Damian P Hampshire

Professor of Physics Head of Superconductivity Group (DUSG) d.p.hampshire@durham.ac.uk

Dr Mark J Raine Chief Experimental Officer

Chief Experimental Officer Member of Superconductivity Group (DUSG) m.j.raine@durham.ac.uk

Rev 1: 6th Feb 2022

CONTENTS / SUMMARY

1	High Magnetic Fields World-class horizontal and 2 x vertical 17-15 T, 40 mm bore magnets. (+ 9 T PPMS).
2	Measurement and Control Critical current facilities (< 6 kA, 2 to 400 K, < 15 T) measurements on cables at 1800 A and 10 T
3	<i>I_c for HTS and LTS Cables</i> HTS and LTS cables critical current up to 2 kA
4	I_c for HTS and LTS Joints LTS and HTS critical current up to 1 kA in high fields on jointed superconducting samples
5	I_c for HTS Tapes HTS critical current up to 1 kA as a function of field, angle, variable temperature and strain
6	$I_{ m c}$ and $ ho_n$ for LTS Strands and Joints LTS critical current up to 1.2 kA as a function of field and temperature and strand internal resistivity
7	<i>I_c for HTS and LTS Under Strain</i> LTS and HTS critical current up to 1 kA in high fields under applied strain
8+9	ITER Contract €1.6M, 5 people for 5 years, 13,000 measurements, on-budget and on-time.
10	ITER QA for Conductor Fabrication PPMS - Tensile testing - European Reference Laboratory
11	HTS and LTS small magnets Design, fabrication and performance of HTS and LTS magnets in Durham
12	Engineering Workshop Equipment manufacture
13	Heat-treatment furnaces High purity heat-treatment facilities up to 1150 $ \mathscr{C}$
14	Commercial High-field Critical Current Measurements

References

15

High Magnetic Fields

World-class horizontal and 2 x vertical 15 T, 40 mm bore magnets. (+ 9 T PPMS).

15 T horizontal magnet system

This word-class Helmholtz-like split-pair horizontal magnet system has a 40 mm bore and allows fieldangle measurements at cryogenic temperatures on non-isotropic (HTS) superconducting conductors

15 T vertical magnet system

This magnet has a 40 mm bore and allows high-field (15 T) measurements to be performed at cryogenic temperatures.

9 T Physical Property Measurement System

The PPMS can perform measurements in fields up to 9 T and at temperatures from ~2 K to 400 K.

2 low-field iron core magnets

These magnets have adjustable bores (by moving the pole pieces) providing 0.7 T in a 40 mm bore and 0.4 T in a 100 mm bore.

6 kA High current measurements

Durham has four 120 A, three 2 kA and four 1.2 kA power supplies. The supplies can be wired in a master-slave configuration to deliver up to 6 kA (hardware up-grade to 10 kA is simple/commercially available).

Nanovolt measurements

We have more than two dozen high precision Keithley voltmeters that are used in conjunction with nanovolt amplifiers to measure voltages signals close to the fundamental limit of Johnson noise.

2 to 400 K temperature control

Standard state-of-the-art temperature controllers are used with field calibrated CERNOX thermometers and heaters for temperatures above 4.2 K. Vapour pressure control is used for 4.2 K > T > 1.8 K and 80 K > T > 65 K.

Bi-2223 HTS Cable International Round robin (August 2022)

Durham has been invited to participate in the International round robin critical current measurements on Bi-2223 superconducting cable as part of the Japanese Project of DC Critical Current Test Method Standardisation of Cables. The measurements are anticipated to take place during August of 2022.

Rutherford cable critical current

Low to high-field critical current measurements were performed on Nb-Ti Rutherford cable up to 2 kA.

A bespoke, high current, probe was designed and manufactured to measure the Rutherford cable measurements with a high electrical/thermal resistance section hard soldered into the copper sample mount to restrict current shunting and cryogen expense during measurement.

*I*_c for HTS and LTS Joints

HIS 1

LTS and HTS critical current up to 1 kA in high fields on jointed superconducting samples

HTS joints critical current

State-of-the art joints between high temperature superconducting REBCO tapes have been fabricated and measured to determine joint resistance.

LH Plot: V - I trace at 4.2 K for joint fabricated using $In_{52}Sn_{48}$ solder as a function of field parallel to the tape surface.

RH Plot: V - I trace for two soldered joints and a single REBCO tape.

LTS joints critical current

Durham has fabricated joints for low temperature superconducting materials, such as Nb_3Sn and Nb-Ti strands and Nb-Ti Rutherford cables and completed critical current measurements.

V-I data at different magnetic fields for soldered joints formed from Nb₃Sn ITER strands at 4.2 K. The two magnetic field values shown are those at (i) field centre and (i) at the top of the joint approximately 150 mm away. When the solder is normal (i.e. not superconducting), the resistance is 0.7 n Ω .

I_c for HTS Tapes HTS critical current up to 1 kA as a function of field, angle, variable temperature and strain

HTS tape critical current

Durham has a wealth of experience in performing critical current measurements on HTS materials as a function of field, field-angle, variable temperature and strain.

Critical current density as a function of field-angle (to tape surface) for DI-BSCCO CA50 tape at 77 K and different applied magnetic fields

Transport critical current density of $YBa_2Cu_3O_{7-\delta}$ at 4.2 K versus field-angle (to tape surface) at 6 and 11 T.

Iron core magnet (max field 0.7 T) Horizontal magnet (max field 15 T)

5

 I_{c} and ρ_{n} for LTS Strands and Joints LTS critical current up to 1.2 kA as a function of field and temperature and strand internal resistivity

Nb₃Sn and Nb- Ti strand joint internal component resistances

The resistances of soldered joints of Nb_3Sn and Nb-Ti strands were measured as a function of temperature and field to determine the internal bulk and interfacial resistivities to assess optimal cryogenic heat load in practical superconducting fusion joints with these materials [2].

Nb₃Sn and Nb- Ti strand critical current

Durham has completed thousands of critical current measurements on Nb_3Sn and Nb-Ti strands as a QA requirement for inclusion in ITER's toroidal and poloidal field coils.

6

Critical current under applied strain

HTS and LTS samples are mounted onto bespoke strain probes. HTS tapes are soldered to a CuBe springboard (see below) and LTS strands to a Walters spring (see figure on right).

ITER Contract €1.6M, 5 people for 5 years, 13,000 measurements, on-budget and on-time.

13,000 Measurements for ITER

In early 2011 Durham University signed a **€1.6M** contract with Fusion for Energy (F4E – the Domestic Agency responsible for Europe's contribution to ITER).

We provided seven types of QA measurements: 3 x cryogenic: critical current (and *n*-value), hysteresis loss and residual resistivity ratio and 4 x room temperature: strand diameter, twist pitch, copper to non-copper ratio and plating thickness. Nb₃Sn strands were not included in European ITER magnets if the billet did not pass Durham QA.

Durham subsequently won contracts to provide 600 Witness sample measurements (used to verify toroidal field coil heat-treatment quality in Italy) and 400 Nb-Ti measurements on strands earmarked for inclusion in poloidal field Coil 6.

Cryogenic measurements summary for F4E contracts

Room temperature measurements summary for F4E contracts

	Diameter	Twist pitch	Cu-non-Cu ratio	Plating thickness	Plating adhesion	
				The second se		
QTY~	1750	1750	1750	1750	330	7300
Nb ₃ Sn	Laser micrometer Example: 80 measurements per sample: 20 circumferential at 4 locations	Acid etching, photography and Photoshop	SEM and Photoshop	Acid etching and mass measurements (chromium)	Not required	NbaSn
IT-dN	Laser micrometer Example: 80 measurements per sample: 20 circumferential at 4 locations	Acid etching, photography and Photoshop	Acid etching and mass measurement	Couloscope (nickel)	Photography	Nb-Ti

Laboratory

9 T Physical Property Measurement System

The PPMS can perform measurements (see below) in fields up to 9 T and at temperatures from \sim 2 K to 400 K.

- Ac susceptibility
- Dc extraction
- Ac Transport
- Resistivity
- Heat capacity

Tensile Stress Testing on Nb₃Sn

HTS and LTS magnets

i) HTS small magnet producing 1.3 T, 4.2 K with a 40 mm bore (HTS Bi-2223 tape) [13]

LTS small magnet producing an AC field 2T.s⁻¹ (0.1 T at 19.7 Hz) [15] ii)

Both magnets were designed, fabricated and tested in Durham.

1.3 T (at 4.2 K) HTS Bi-2223 magnet module with a 40 mm bore [13]

winding the tape and insulation onto the Tufnol bobbin

during the vacuum resin impregnation process.

Cryogenic and Magnet Engineering Workshop facilities

We are supported by and have an established working relationship with:

- *i)* The Physics Department's Engineering Workshop: Bespoke specialist cryogenic and magnet mechanical equipment has been designed, developed and commissioned over more than 20 years.
- *ii)* Many small engineering firms along the Tyne river: Fast (i.e. time-constrained), mass manufacture of probes and holders were completed by these firms as required for the ITER project.

High temperature tube furnaces < 1150 °C

- We have four high temperature furnaces (up to 1150 °C) used to react 1000s of LTS samples for the ITER project. They include high-homogeneity three-zone tube furnaces capable of extended, programmable, heat-treatments in various gas environments; argon and nitrogen, for example.
- High grade (EA998) alumina tubes with stainless steel double O-ring sealing holders are used to maintain sample space integrity.
- Kanthal tubes with knife-edge seals are used for increased purity environments
- Inline gas filters are used to increased inlet gas purity to six nines

Nb₃Sn heat-treatment profiles for a) bronze route and b) internal tin strands.

Time (h)

Selected examples of commercial contracts with Durham

Nb-Ti Samples:

Critical current measurements requested:

- Field range: 2 to 11 T
- Temperature range: 2.5 to 4.2 K
- Maximum current 1000 A

Nb-Ti Samples:

Critical current measurements requested:

- Field range: 2 to 10 T
- Temperature: 4.2 K

Sample dimensions

 Maximum current 1600 A Hysteresis loss Residual resistivity ratio Twist pitch

Copper to non-copper ratio

Jointed Cable-in-channel Nb-Ti Rutherford Cables:

Critical current measurements requested:

- Field range: 9.5 to 10.5 T
- Temperature: 4.2 K
- Maximum current 3000 A Residual resistivity ratio

Nb₃Sn Samples:

Critical current measurements requested:

- Field range: 11 to 13 T
- Temperature: 4.2 K
- Maximum current 300 A

- [1] M. J. Raine, S. A. Keys and D. P. Hampshire, "Characterisation of the Transport Critical Current Density for Conductor Applications" in Handbook of Superconducting Materials.Cardwell, D A, Gurevich, A V, Lee, P J, Tallon, D, Iida, K, Grasso, G, Lorenz, M, Larbalestier, D, Radebaugh, R, Cooley, L, Gomory, F, Durrell, J H & Rogalla, H Taylor & Francis Books, Inc to be published (2022)
- [2] M. J. Raine and D. Hampshire, "Measurement of the Resistivity of Internal Components in Standard Commercial LTS Strands to Assess Cryogenic Heat Load in Superconducting Fusion Joints", End of contract report, (2020).
- [3] Charles W. A. Gurnham and Damian P. Hampshire <u>Self-Field Effects in a Josephson Junction Model for J_c in Theva REBCO Tapes</u>, IEEE Trans. Appl. Supercond. 32 (4) 8000205 (2022)
- [4] Andrew P Smith, Mark J Raine, Elizabeth Surrey, Satoshi Awaji, Tatsunori Okada and Damian P Hampshire <u>3-D</u> <u>Properties in (RE)BCO Tapes Measured in Fields up to 35T., IEEE Transactions on Applied Superconductivity.</u> <u>29 (5) p. 6601005 (2019)</u> HFLSM, Tohoku, Japan – Selected as one of the ten best papers from previous years.
- [5] Branch, Paul Oliver (2019) <u>The strain dependent critical current of high field superconductors for fusion energy</u> <u>applications.</u> Doctoral thesis, Durham University.
- [6] M. J. Raine and D. Hampshire, "Strand Characterisation of Nb-Ti PF Strands", end of contract report, 2017.
- [7] P. K. Ghoshal, R. J. Fair, D. P. Hampshire. V. Hagen-Gates, D. Kashy, R. Legg, R. Renuka-Ghoshal and Y. Tsui <u>Design and Evaluation of Joint Resistance in SSC Rutherford type cable splices for Torus magnet for the Jefferson Lab 12 GeV Upgrade IEEE Trans Appl Super 26 4 4800304 (2016)</u>
- [8] Yeekin Tsui, Elizabeth Surrey and Damian Hampshire. <u>Soldered Joints An essential component of demountable HTS fusion</u> magnets – SUST 29 075005 (2016)
- [9] D. P. Hampshire Durham University Youtube Video re fusion : <u>https://www.youtube.com/watch?v=6hEe1ZUKX6A</u> (2015)
- [10] M. J. Raine, Y, Tsui, A. Dawson and D. Hampshire, "Final Report Characterisation of Rutherford Cables for Jefferson", end of contract report, 2014.
- [11] P. Sunwong, J. S. Higgins, Y. Tsui, M. J. Raine and D. P. Hampshire <u>The critical current density of grain boundary channels in polycrystalline HTS and LTS superconductors in magnetic fields SUST 26 095006 (2013)2013</u>)
- [12] P. Sunwong J. S. Higgins and D. P. Hampshire <u>Angular</u>, <u>Temperature and Strain Dependencies of the Critical Current of DI-BSCCO Tapes IEEE Trans Magn. 21 No3 p2840 (2011)</u>
- [13] A. B. Sneary, C. M. Friend and D. P. Hampshire <u>Design, fabrication and performance of a 1.29 T Bi-2223 magnet. Super.</u> <u>Sci. and Technol. 14</u> 433-443 (2001).
- [14] N. Cheggour and D. P. Hampshire <u>A probe for investigating the effects of temperature, strain, and magnetic field on transport critical currents in superconducting wires and tapes. *Rev. Sci. Instr.* 71 4521-4530 (2000).</u>
- [15] H. D. Ramsbottom and D. P. Hampshire <u>A Probe for measuring magnetic field profiles inside superconductors from 4.2K up to T_c in high magnetic fields. J. Meas. Sci. and Tech. 6 1349-1355 (1995).</u>
- [16] D. P. Hampshire and H. Jones <u>An in depth characterisation of a (NbTa)₃Sn filamentary superconductor. IEEE Trans Magn Vol MAG-21 No. 2 289-292 (1985)</u>