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The maximum current that can be carried by a long unbiased superconducting tunnel junction as a
function of applied magnetic Beld has been calculated. A symmetric junction geometry divas assumed for
which the boundary conditions relate the space derivatives of the phase difference @ at the thoro ends. In
addition, vm graph the current density distribution within the junction vvhen the total current is maximum,
and pve show the shape of the current zorHces in the large-6eld case and the details of the self-limiting of the
tunnel current as a function of junction .ength in zero applied 6eld.

I. INTRODUCTION

EVIDENCE that a weak magnetic Geld could
4 modulate the current carried by a superconduct-

ing tunnel junction provided striking conhrmation of
the Josephson dc effect."For a uniform junction of
sma]. j. dimension or low critical current, the magnetic
field due to the tunneling current can be neglected.
In this case, the maximum current variation with ap-

plied magnetic field follows a Fraunhofer diffraction

pattern. '' As the junction size or critical current in-

creases, the inhuence of the current-induced mag-

netic field becomes important. Below a critical Geld,

R semi-inhnite junction exhibited a Meissner effect,
screening the external Geld at the Josephson penetra-

tion distance )q.' The importance of the tunneling-

current-induced Geld is measured by the ratio of ~~

to the dimension I. of the junction perpendicular to
the external held. Here we will discuss the dependence

of the junction critical current on magnetic held and

on the ratio I./Xq. The detailed spatial structure of the

current density and magnetic held will also be shown.

In Sec. II, the junction geometry and the basic equa-

tions which describe the Josephson tunneling phe-

nomena are briefly reviewed. The equations have been

derived by a number of people. ' Anderson in particular

has used these equations to discuss the single vortex and

Abrikosoe array of quantized vortices which can ex-

ist in a junction. The equations are solved in terms

of elliptic functions, and. the boundary conditions are

satished by a graphical method.
Results from this analysis ale plotted and discussed

in Sec. III. The major result is a plot of the junction

critical current versus magnetic held for a junction with
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an I/XJ ratio of 10. This illustrates the interesting
features which are present for a large I/Xv ratio. We
find that for a given magnetic Geld, there may be sev-
eral allowed current distributions differing in the num-
ber of vortices they contain. Each of these solutions
has its own critical current. The junction critical cur-
rent presumably switches to that mode which is ca-
pable of carrying the maximum critical current for a
given value of II. The current density and held dis-
tributions in the junction are shown for a number of
special cases.

&&S&C EQUATIONS

The geometry of the junction is shown in Fig. j..
Theoretically it consists of two semi-inhnite super-
conducting sheets which overlap for a distance I in
the z direction. In the overlap region the superconduc-
tors Rrc scpRlRtcd by R tllln lnsulRtlng lRycl. gfc im-
agine that the current Rows in at the left from z= —m

and out at the right towa, rd s= ~. The tunneling
probRblllty peaks sharply ln thc direction pcrpendicu-
1ar to the junction interface, so that the important
tunneling current density is along the x direction.
The modihcations of this which occur at the edge of
the junction are on the scale of the London penetration
depth, which is completely negligible for this analysis
which is concerned with variations on the scale of the
Josephson penetration depth.

Because of the symmetry of this configuration, the
variables ca,n only depend upon the s coordinate.
Experimentally, a junction. geometry approaching our
idealized form can be obtained by making the y di-
mension either large or small compared to X~. If it is
small and the external held is along the y axis, there
is no way for spatial variations to be generated in the
y direction.

Josephson showed that the current. density was
given in terms of the relative pair phase g(s) across
the insulator by

J(s) =Jr sing(s) .

Furthermore, the gradient of the phase is proportional-
538
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to the local 6eld

By/Bs= (2ed/«) H(s) . (2)

Here d is equal to twice the penetration depth (for
identical superconductors) plus the insulator thick-
ness. Combining (1) and (2) with the Maxwell equa-
tion

{8/Bs)H(s) = (4r/c) j(s), (3)

one obtains a diGerential equation which determines

y in the absence of a voltage bias,

(8'/Bs') y = (1/Xq') smy. (4)

Here, Xg=[«'/82redj~]'I' is the Josephson penetra-
tion depth.

%e are interested in the case in which there is an
applied external magnetic 6eld H, and a current

I= j sds (~)

Qowing per unit y length. Two boundary conditions
on Eq. (4) are obtained from the continuity of H
across the junction edges. Using (2) we have

(sic/2ed) (By/Bs) [p= H(0),

(«/2ed) (By/Bs) [~=H(L)

Now H(D) and H(L) are simply related by Ampere's
Law to I and H, .
H(L,) —H(0) =42rI/c

=«/2edLBy/Bs [&
—By/Bs [,j,

H(L,)+H(0) = 2H,

H8 inta
Po p8f

FrG. 1. The tunnel junction geometry assumed. The junction
length is I. and the applied H Geld is into the plane of the page.

Using the properties of the Jacobian elliptic functions,
the magnetic Geld and current density can be written
ln the forIQ

(2ed/«) H(s) =By/Bs

(12a)

j(s) =jg siny

Gp 8 Sp= —2gy sn k cn k . ].2b8J 8J
Here the sn, cn, and dn are Jacobian elliptic functions
of argument (s—sp)/B. q and parameter kp. Using Eq.
(7), the boundary conditions which determine the in-
tegration constants k' and sp are

jP dn $2

=«/2edfBy/Bz[z, +By/Bs[pf. (g) dn k' —dn k' = BgI. (13b)

The last equalities follow from Eq. (6) and relate the
end-point gradients of the phase to I and Lt,.'

Equation (4) can be put into a standard elliptic
integral form by integrating to get

By/Bs=Xg '[ 2(C—cosy) g"'. (9)

Then setting C= (2—k')/k', one obtains

S—mp
'~-& d8

kP ~ p [1—k' sin'81'" ' (10)

which has as its solutions the Jacobian elliptic func-
tions.

Assuming for a moment that k&1, then y is related
to@by

0 k&1, the equations for the 6eld and current den-
sity become

(2ed/«) H(s) = By/Bs

= (2//cfv) cc (/2'), (1«)

S Sp s —s()j(s) = —(2j,/k) sn 1/k2 dn
"

1/k2 [, (14b)

and the boundary conditions are

Zp
sin-'y= cn k'

Bz

I.—Sp Spcc 1/(c' +cc 1/2') = (2cdf(c) kl 22„11a III),J Xg

)PP SP
cos~@=—sn k' .

Bg
(11b) I.—zg —apt

cn 1/2' —cc 1/2'-) = (4 cd/2c') (c1zI

~ These are similar to equations obtained by Ivanchenko eI, al.,
Ref. S. (15b)



C. S. 0 YEN A i' D D. J. S CALAPINO

piete elliptic integral
n/2 a0

It(k') =
t 1 —k' sin'8l'i'

When the junction contains an integral number of
wavelengths, i.e.,

L= N2k)tgE(k'), (17)

I t l
3 6 9 I2 I5

(c)

the current distribution goes through n complete cycles
between @=0 and a=I.. Under these conditions the
junction is said to contain n current vortices, and the
total current I carried by the junction vanishes.

From Eq. (17) it follows that k decreases as the num-

ber of vortices in the junction increases. Since the
shape of the elliptic functions depends upon k, the
shape as well as the dimension of a vortex changes
with the number of vortices in the junction. In Sec.
III, Fig. 5(d) shows a solution in which the junction
contains one vortex. The shape of this current dis-
tribution should be compared with the nearly sinus-
oidal current pattern shown in Fig. 7(d) for the case
of three vortices.

III. RESULTS OF THE CALCULATION

Z /kg

FIG. 2. Tunnel current density j(s) in the junction when
I=I „and P,=O for: (a) L=2A~, (b) L=S g, (c) L= j.5Xq,
and (d) L= ~.

In principle, Eqs. (13) or (15) can be used to deter-
mine the parameters k and so for given values of H,
and I. Then j(s) is given by (12b) or (14b). However,
since our goal was to find the maximum current that
the junction could carry in a given magnetic Geld, the
current was maximized subject to the boundary con-

ditions. This was done by a graphical approach using
tables and plots of the three Jacobian elliptic functions
which appear in the equations.

The general method employed was to Gx H, and
then determine the allowed values of k consistent with

this H, . For each choice of k we Gnd the correspond-

ing ss from Eq. (13a) or (15a). Finally, using k and

so, a value for I is obtained. Taking all k that are possi-
ble for solutions having a given H„we look for a max-

imum in the corresponding I values. For some ranges
of II, we Gnd two or more relative current maxima.
When this occurs, they are found to exist for different
values of k which correspond to solutions with diferent
numbers of whole vortices in the junction.

The parameter k has physical significance stemming
from the fact that both the wavelength and the de-

tailed shape of the current distribution depend on k.
In the limit of small k, the current distribution has the
familiar sinusoidal shape with a wavelength ~SJ. As k

increases, this sinusoidal shape becomes distorted and

the period is given by 2B,~E (k') . Here E is the com-

In this section, the results obtained by solving the
boundary-value problem given in Sec. II are discussed.
It seems simplest to begin by discussing the current
density for maximum current with zero external mag-
netic Geld. In the limit where the junction length is
small compared to the Josephson penetration length,
the current density is uniform. Figure 2(a) shows that
the current density has only a slight deviation from
uniformity for L/X& 2. However—,—as L/Xz increases
further t see Figs. 2(b) and 2(c)], the current density
decreases in the center and. peaks near the edges. This
is simply the Meissner eBect for our junction. Figure
2(d) gives a plot of the current density obtained by
Ferrell and Prange in their analysis of a semi-inGnite

junction. 4 It is clear that our results near the two edges
of a long junction, Fig. 2(c), are consistent with the
current density for a semi-inGnite junction. According
to the Landau-Ginzburg equations, the current den-

sity in a superconductor is proportional to the gradient
of the pair phase. This implies that the current den-

sity is a maximum at the surface of a bulk supercon-

2.0—
2k~ li

I .0

I

4 6 8 )0
L /X~

FIG. 3. Maximum total current versus junction length L
for II,=O.
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Fn. 4. (a) The Fraunhofer pattern
approximation for the critical current
versus applied field when L= IO) g. (b)
Results of the calculation using Jacobian
elliptic functions when L=10)J. Note
the striking dissimilarity for this large
L/Xq ratio.

l, o
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ductor. However, in the case of a superconducting
tunnel junction, the current density is proportional to
the sine of the phase difference q across the junction.
Like the phase gradient in the bulk superconductor,
this phase difference decreases with depth into the
sample. If the durrent were proportional to q divided
by thc jllIlctlo11 ba111cl tlllckllcss (analogous to tllc
bulk superconductor), the current density would be
maximum at the edge. However, since the current den-
sity is proportional to sin q, the peak will occur where

y has dropped to s-/2 (mod 2s). Under the maximum
current conditions shown in Figs. 2(c) and 2(d), the
phase drops from ~(mod 2s) at the edge, giving zero

current density at the edge and peak current at a dis-

tance of order Az into the junction.
In Fig. 3 the total current for zero external mag-

netic field is plotted as a function of the junction
length. Initially the maximum current carrying ca-
pacity per unit width increases linearly with I., reRect-

ing the uniformity of the current density. However, for
L greater than 4)z, the current rapidly saturates at
the value 4Xqj~. An amount of current 2),gj~, is carried
on each edge as originally discussed in Ref. 4.

In the presence of an external magnetic field, the
current density changes. For a junction having a
small I/Xq ratio, the current density which maximizes
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the current is

j(s) =ji cos t (2ed/Pic) II, (s L/2) ]—.

The current versus magnetic field follows a Fraunhofer
diffraction pattern'

sin/(ed/Iic) II,Lj
(ed/Ac) II,L (19)

For a large L/Xq ratio the behavior is quite different.
In Fig. 4, the critical current (solid line) is plotted
as a function of magnetic 6eld for a junction with an
L/Xv ratio of 10. As the magnetic field II, increases
from zero, we find that the total current initially de-
creases linearly with II, according to the equation

I= 4X&j i (c/kr) II,. — (2o)

This result can be understood as follows. As we have
seen, in a long junction in zero 6eld the current den-

sity is essentially restricted to the ends. Let us call
I~ the current Qowing on the left-hand edge and I„ the
current on the right-hand edge. In the presence of a
small magnetic 6eld, the currents carried at the ends
differ by an amount

I„—I,= (c/2m) II, (21)

necessary to shield the external field from the junction
center. Since the maximum current at an edge cannot
exceed 2X&j&, the critical junction current is obtained
when I,= 2Xzj&. Combining this with Eq. (21), the crit-
ical current I~+I, is given by (20). At the bottom of
the linear portion, II,= —I„and the net tunneling cur-
rent I=O. Here the junction contains exactly one whole
current vortex consisting of tunneling current in the +z
direction at the right end and in the —x direction on
the left.

In order to discuss the rest of Fig. 4, we find it con-
venient to categorize solutions by the number of com-

plete vortices present in the junction. Solutions where-

in the junction contains more than e but less than
++1 vortices we call the "e to ++1 vortex mode" for
the junction. We find that solutions in a given mode

can exist for only a 6nite range of II,. Furthermore,

1 c

FIG. S. The general shape of I„ft,as a function of applied mag-
netic field for a mode containing between n and m+1 vortices.

for some ranges of H„ it is possible for the junction
current density to vary in the sense that several modes
characterized by diferent vortex numbers and dif-
ferent critical currents can exist at a given II,. A plot
of the maximum I versus II, for the n to n+1 mode
will look like the curve abc in Fig. 5. At point a the
junction contains exactly n vortices and at point c
exactly v+1. The maximum-current-versus-II, curve
for the n+1 to I+2 mode is similar in shape. However,
as shown in Fig. 5, it starts at point d and overlaps
part of the e to n+1 mode. This leads to the structure
shown in Fig. 4 for a junction of length I= j.OP g.

Physically, the overlap is a consequence of the fact
that the spatial variation of the phase p is determined

by the total magnetic field at each point in the junction.
This includes both the externally applied field and the
field produced by the junction currents. The result
is that for a given B, solutions may be possible having
different values for the period and shape of the vortex
structure and also for the junction current I. Between
points d and c, the allowed solutions include possi-
bilities having both less than and more than @+1vor-
tices, that is to say, solutions in both the I to n+1
mode and in the m+1 to v+2 mode. Calculations of
the maximum current possible for solutions in the e
to m+1 mode gives a curve that falls to zero as B.
approaches point c. The maximum I for solutions in
the n+1 to v+2 mode rises from zero as II, increases
from point d. One result of the overlapping discussed
above is that for every H, &0 we can find some mode
of operation for the junction which allows a total cur-
rent I)0. This has been observed experimentally~
and is in contrast with the Fraunhofer pattern seen
for short junctions where periodically I, =0.

In addition to the behavior of the critical current as
a function of the applied magnetic field, our solutions
give us details concerning the current density j(z).
This tells us the actual shape of the vortices. First,
however, we consider the situation where the junction
contains less than one whole vortex. For long junctions
the maximum I that can be carried by the junction
in this mode depends on H, in the linear manner dis-
cussed previously. In Fig. 6 we have arbitrarily chosen
four values of H, and taken I.=10'. Using the solu-
tion in the 0 to 1 vortex mode which has the maximum
I for each II, chosen, we have graphed the current
density and magnetic field in the junction for each of
these four cases. Note that when the reduced field
X= (2ed/Sc)A@II, =2, the only solution possible in the
0 to 1 vortex mode is the one-vortex solution. This
solution carries zero net current I and is the solution
at the bottom of the linear portion of the I -versus-

H, graph seen in Fig. 4.
~ Measurements of I, versus II have been carried out by A.

Goldman (to be published}. The results are in good agreement
with the behavior we have discussed.
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We have already noted that different solutions con-
taining e vortices will occur at diferent II, depending
on whether they are part of the n —1 to n vortex mode
or the I to n+1 mode. The current density and mag-
netic Geld plots for the two cases will look diGerent
even though both solutions fit exactly &z vortices into
the junction. Figure 6(d) can be compared with Fig.
7(a), which also shows a one-vortex solution but at
X', =0.06. This solution is the start of the 1 to 2 vortex
mode.

Solutions with a nonintegral number of vortices in
the junction are also possible. In fact, since a complete
vortex does not contribute to the total current I, all
solutions with I)0 are of this type. A solution in the
1 to 2 vortex mode is shown in Fig. 7(b). A solution
in the 2 to 3 vortex mode is shown in Fig. 7(c). We
can see that as more vortices 6t into the junction they
not only have a smaller dimension, but they become
more sinusoidal in shape as well. The magnetic 6eld
H(s) is smoothing out as H, is increased, since the
modulating action of the tunneling currents has less
effect on larger applied fields.

IV. CONCLUSIONS

The emphasis in this work has been to obtain the
details of the current-magnetic-Geld behavior of a super-
conducting tunnel junction. Such junctions exhibit the
phenomena of vortex structure in a particularly simple
and direct way. From a theoretical point of view, ex-
act solutions are available. From an experimental point
of view, the details of the vortex structure can be
probed by simply measuring the current-field behavor. '

In this paper we have delt with the static properties
of the vortex structure. A similar detailed analysis of
the dynamics of the transition between diGerent vor-
tex modes would be of interest. It would provide a
simple model for vortex creation phenomena. Experi-
mentally, we expect that the dynamics of the crea-
tion process are reAected in the anomalous continous
voltage-magnetic-6eld structure observed in tunnel
junctions with large I/Xz ratios. ' The dynamics of
the transition between different vortex modes could
also be investigated.
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Investigation of the magnetic Geld dependence of the maximum zero-voltage current of wide, high-current
Josephson junctions has revealed behavior drastically different from the usual Fraunhofer pattern for
narrow junctions. The experiments are interpreted as evidence for a Meissner effect for the insulating layer
and adjacent penetration layers of wide junctions in low external Gelds, and for an eventual transition to a
mixed state as the external Geld is increased from zero.

I. INTRODUCTION

t %HE most striking experimental evidence for the. i existence of the Josephson effect is the magnetic
field dependence of the maximum zero-voltage tunneling
current of narrow, weakly-coupled Josephson junctions.
In a narrow junction, the dimension I of the junction
perpendicular to the held is much smaller than the
Josephson penetration depth Xs.' We have been in-

*Work supported by the U.S. Atomic Energy Commission
under contract AT-(11-1)1569 by the Graduate School of the
University of Minnesota, and by the Alfred P. Sloan Foundation.
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tion depth. In the expression d=2Xz, +t, J1 is the maximum
Josephson current density, c is the velocity of light, e is the elec-
tronic charge, )I, is the London penetration depth, and t is the
oxide layer thickness.

vestigating the 6eld dependence of the maximum zero-
voltage tunneling current of wide (L))Xq) high current
junctions, and have observed behavior different from
the Fraunhofer'3 pattern obtained for narrow junc-
tions. From the measurements, it is possible to infer
that wide junctions exhibit a Meissner effect at low
external 6elds and an eventual transition to a mixed
state as the external field is increased. The experiments
indirectly probe field and current distributions in the
insulating layer and adjacent penetration layers of the
junctions. Some of the features of the observed be-
havior, which is a consequence of the "self"-helds
generated by the tunneling currents, have already been

J. M. Rowell, Phys. Rev. Letters 11, 200 (1963).
~M, D. Fiske and I. Giaever, Proc. IEEE 52, 1155 (1964).


