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Abstract. After a short rCsumC of the general ideas and assumptions of the independent- 
particle model of a metal, an account is given of the experimental methods which have been, 
or may be, used to determine the details of the model for any given metal, with special 
reference to the shape of the Fermi surface and the electronic velocity at all points on the 
Fermi surface. Particular attention is paid to the exposition of the theory underlying each 
method, and as far as possible only simple mathematical and physical ideas are used. The  
conditions of application of the methods are discussed, and at the end examples are given 
of the results so far obtained by their use, with special emphasis on the analysis of the 
electronic structure of copper. The methods discussed are the following : Magneto- 
resistance, de Haas-van Alphen and Schubnikov effects, anomalous skin effect, cyclotron 
resonance, ultrasonic attenuation and magneto-acoustic effects, size effects. 

5 1. I N T R O D U C T I O N  
H E  subject of this review is the use of experiment in obtaining as accurate 
as possible a description of a real metal, so that its properties, particularly T those concerned with the transport of electrical charge and of thermal 

energy, may ultimately be understood more exactly than at present. It should, 
of course, be appreciated from the outset that no strictly exact description is 
possible. Even under the most ideal conditions, with electrons moving in a 
perfectly ordered ionic lattice at the absolute zero, exact specification involves 
writing down the ground state wave function of the assembly of electrons and 
nuclei-an impossible task. If 
there were any serious doubt about whether in principle the laws of quantum 
mechanics are adequate to account for the observed properties of metals one 
might have to consider questions of this sort. The  task, however, is not to see 

But fortunately this is not what is required. 
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whether the fundamental laws give a correct description, but to discover a mental 
technique which will avoid as far as possible the necessity of referring to funda- 
mental laws-to find a model whose properties can be apprehended instinctively, 
so that any calculations of these properties can be seen in their proper perspective, 
as more precise statements of what the physical imagination is prepared to accept 
as qualitatively intelligible. One cannot hope that the model will reproduce 
every detail of the experimental truth, but one may aim at a reasonable compro- 
mise ; a model not so elaborate as to bemuse the imagination, yet close enough 
to the truth to act as an acceptable substitute for it, above all one whose limits 
of validity are understood. Just how good a model one may expect to devise is 
a matter for speculation-certainly nothing like a satisfactory solution has been 
found yet, as can be seen from the tables comparing theoretical prediction with 
experimental results, to be found in any standard text on the theory of metals. 
Yet the limitations of existing models may not lie so much in the basic assump- 
tions as in the introduction of simplifying approximations to make them analytically 
tractable. There is, in fact, a real need for the analysis, by numerical methods if 
all else fails, of models more generally formulated than some which have been 
studied in the past. But if the lack of such analysis is to be imputed a fault on 
the part of the theoreticians, the experimenters for their part cannot escape blame ; 
for in spite of the huge mass of information on almost every conceivable metallic 
property, it does not appear to be sufficient to allow an adequate model of a metal 
to be synthesized from it. The  history of the development of metal physics has 
been one of invention, on theoretical grounds, of successively more plausible 
models, whose success has been gauged by comparison with experiment ; rarely 
has experiment led directly to an improvement in the model. The  reason for 
this is to be found in the complexity of the problem, the properties which are 
most easily studied being determined by a large number of different parameters 
of the model, so that it is hard to make any definite statement about the values 
of these parameters by an examination of the data. In  the last few years the 
situation has improved somewhat by the discovery of phenomena which are 
dependent on only a few parameters, and there is now some hope that a model 
of a metal may be synthesized on the basis of experiment and some rather general 
theoretical ideas. 

Underlying the whole treatment that follows is one great simplifying assump- 
tion, which certainly must lead to errors, but which it may be hoped will not be 
disastrous. This assumption is that the dynamics of the conduction electrons 
in the metal may be reduced to the quantum dynamics of individual particles, as 
if there were no interactions between the electrons. We shall not discuss in 
detail the measure of a priori justification which can be given to this assumption, 
but shall indicate briefly why it may be expected to work fairly well. In  this 
discussion, as in the whole of what follows, we shall often adopt another approxi- 
mation which, though perhaps unnecessary, may be regarded as a simplification 
of thought, especially by experimental physicists ; as far as possible we shall 
avoid the formalism of quantum mechanics and adhere to the representation of 
semi-classical mechanics, such as is associated with the names of Bohr, Sommerfeld 
and Wilson ; that is, the conceptual framework of classical mechanics patched up 
as necessary by empirical rules of quantization. I t  is desirable to emphasize that 

I t  is these phenomena with which we shall be concerned. 
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this attitude is envisaged as a convenience and an aid to the imagination ; it is 
only adopted when it is believed that the errors involved are negligible. 

The  simplest model of a metal is the free-electron model ; the electrons are 
treated as if they formed a perfect gas of non-interacting particles moving in a 
rectangular box in which the potential is uniform. Since electrons are fermions 
the many-particle wave function is a determinant whose elements are individual 
plane wave functions, each of which is interpreted semi-classically as an indi- 
vidual unlocalized particle having well-defined momentum. Alternatively, by 
forming linear combinations of the plane waves, wave packets may be constructed 
to represent partially localized electrons whose momentum is correspondingly 
uncertain. Now in reality the electrons interact with one another through the 
long-range Coulomb potential e2/r .  Even although the mean electronic charge is 
neutralized by the positive lattice charge, local fluctuations in electron density set 
up fields which influence the whole assembly. So strong is this effect, indeed, 
that attempts to allow for it by perturbation methods fail through divergence of 
the distant interaction. A more powerful method of attack, due principally to 
Bohm and Pines (Pines 1955), analyses the fluctuations of density into their Fourier 
components, introducing collective variables for the electron assembly in a manner 
analogous to Debye's use of lattice vibration coordinates to describe the motion 
of the strongly interacting atoms of a solid. Each Fourier component of charge 
fluctuation (plasma mode) is a fairly independent entity with a characteristic fre- 
quency of oscillation up = ( 4 ~ N e ~ / m ) ~ ! 2 ,  where e is the electronic charge in e.s.u. 
T o  a first approximation all plasma modes have the same frequency. The quantum 
energy associated with a plasma oscillation, Emp, is many volts for most metals, 
so that at normal temperatures these oscillations are unexcited. If then we neglect 
the zero point plasma oscillations as of no account, we are led to believe that the 
spontaneous motions of the electrons are so linked as to set up no fluctuations in 
charge density. This is, however, true only as concerns fluctuations over distances 
rather larger than the mean distance between electrons, since there is a lower 
limit to the permissible wavelength for a plasma oscillation. In  effect, then, the 
motions of electrons can be thought of as essentially uncorrelated, except in so far 
as they arrange to screen the long-range part of the Coulomb interaction, that is, 
their motions are correlated to the extent that no long-range variations of charge 
density occur, and in effect their interaction potential instead of being ez/r approxi- 
mates to the form (e2/y)e-K', vanishing rapidly at large distances. The  total 
number of permitted plasma modes is rather small compared with the number of 
electrons, and this means that the number of degrees of freedom described by 
independent collective modes is a small proportion of the total, and the restriction 
to freedom of movement of the particles fairly slight. In  this respect there is a 
marked contrast to the Debye solid, in which all motions can be described in 
terms of independent oscillations, and the strongly interacting atoms of the solid 
may be replaced by a gas of phonons, quasi-particles whose motions are practically 
independent, but whose character is totally different from that of the atoms com- 
posing the solid, But in the metal the quasi-particles may be considered to 
resemble electrons very closely. I t  is probably not significant to enquire precisely 
how many quasi-particles there are, for, being fermions, they are nearly all packed 
down into the lowest-lying energy levels, one to each level in accord with the 
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Pauli exclusion principle, and the only ones that take part in transport and related 
properties are those lying within a few kT of the highest occupied energy level, 
the Fermi level.  These properties are in fact determined by the wave number k 
of a quasi-particle at the Fermi level, and by the relation between energy and 
wave number for quasi-particles excited above the Fermi level and for holes left 
below the Fermi level by such excitations. There is no real need in discussing 
these properties to consider in any detail the precise description of the ground 
state of the assembly ; it is enough to know that the excitations are particle-like, 
and to know the relation between energy and wave number and the interactions 
between them. Since, however, they are particle-like it may be convenient to 
relate the quasi-particle picture to the model of non-interacting electrons, as we 
have just done by imagining the ground state to consist of an assembly of inde- 
pendent particles packed into the lowest states, the relation between E and k at 
the Fermi level being chosen to correspond to the properties of the excitations. 
T o  take the quasi-particles as entirely independent is perhaps to go a little too 
far, since the screened Coulomb interaction is by no means obviously negligible. 
We must discuss what effect it is likely to have on the behaviour of the quasi- 
particles, in order to show that it is probably only a minor influence, 

The  intervention of the exclusion principle is of paramount importance in 
restricting the effect of electron-electron interactions. If the electrons (as we 
shall now refer to the quasi-particles) were not fermions and had a cross section 
for collision determined by the screened Coulomb potential, the mean free path 
between collisions of an electron in a metal would be only a few Hngstroms, the 
lifetime being correspondingly about seconds. According to the uncertainty 
principle the energy of the single-particle state would be indeterminate to the 
extent of about 10 volts, and w7e should be unable to think of the electrons as even 
approximately independent unless we were considering phenomena involving 
energy interchanges of at least 10 volts. When we take account of the exclusion 
principle, however, everything is changed. In  the collision of two electrons 
energy and momentum are conserved, and the states into which the electrons 
are scattered must both be unoccupied-in effect they must be states near or 
above the Fermi level. Thus if energy is to be conserved the only electrons 
which are already present and can collide are those lying in the thermally excited 
region near the Fermi surface. As a result any one electron belonging to this 
region cafinot collide with each of the N electrons present, but only with some- 
thing like NkT/cO, where eo is the Fermi energy. Moreover, even if the two 
electrons come from the permitted region, not all collisions which conserve energy 
and momentum are permitted. For if one electron gains more than a few kT of 
energy the other will find itself with that much less, and no unoccupied state in 
which to fall. This requirement of no energy exchange exceeding a few kT 
imposes another factor of the order kT/Eo on the scattering probability. As a 
result the mean free path is not a few Angstroms but something like (cO/kT)2 
Angstroms, say cm at room temperature, 10 cm at 1 ' ~ .  The  energy uncer- 
tainty corresponding to this free path is smaller than the thermal spread of 
electron energies by a factor of about TIT,, where To is the degeneracy tempera- 
ture EoIk, say 50 000"~ .  There is thus no serious bar at ordinary temperatures 
to treating the particles as independent for the purpose of thermodynamical 
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calculations. Moreover, at no ordinary temperatures does the probability of 
electron-electron collision approach that of electron-phonon or, at the lowest 
temperatures, electron-impurity collision. In  discussing transport phenomena we 
may therefore regard the electrons as virtually independent particles suffering 
collision with thermally excited phonons or with static imperfections of the lattice. 
There is experimental confirmation of this view in comparisons between electrical 
conductivity D and thermal conductivity K of the same samples. If the dominant 
mechanism of electron scattering is elastic collisions with static imperfections, as 
at very low temperatures, the Wiedemann-Franz law is expected to hold under 
rather general conditions, the ratio K ~ D T  taking the value Qn2k2/e2.  Now the 
destruction of an electric current involves the transfer of momentum to the lattice, 
and electron-electron collisions do nothing to aid this, while conversely the 
destruction of a thermal current only involves a rearrangement of energy among 
the electrons, such as can be effected by electron-electron collisions as well as 
by electron-lattice collisions. The experimental verification of the Wiedemann- 
Franz law, even in extremely pure metals, with the correct numerical value of the 
ratio, shows that the probability of electron-electron collision is much less than 
that of electron-lattice collision. 

By arguments of this sort, which have been given detailed treatment only for 
the over-idealized free electron model, we may support the conviction that it is 
worth while adopting the independent-particle hypothesis in discussing the elec- 
tronic structure of real metals, in which the assumption of a uniform potential is 
certainly inadequate. I t  may be that experiments will ultimately show that no 
consistent independent-particle model can be devised, but this has not yet 
happened. I t  seems likely that, for most of the phenomena which we shall treat, 
the discrepancies attributable to electron-electron interactions will be quite 
small, If this should turn out to be a false hope, the model will have failed and 
more elaborate models will need to be devised ; there is little point in attempting 
to meet this situation yet. 

Finally, one more simplifying assumption must be mentioned, the neglect of 
electron-lattice interactions of the type now known to be responsible for super- 
conductivity. Although it seems certain that these interactions are strong enough 
in many metals to reverse the sign of the short-range interelectronic forces between 
electrons close to the Fermi energy, and to lead to a collective interaction at low 
enough temperatures, we shall assume that so long as a metal is not super- 
conducting the independent-particle picture is still adequate, though it must be 
remembered that the electron-lattice interaction may play its part in determining 
the dynamical properties of electrons near the Fermi level. One might expect 
that all effects due to this interaction would show some dependence on M ,  the 
isotopic mass of the nucleus-for example, the superconducting transition tem- 
perature varies as MWz-and the small amount of evidence that the electronic 
specific heat in the normal (non-superconducting) state is independent of the 
isotopic mass gives support to our neglect of the interaction. Present theories 
of superconductivity assume that in the normal state an independent-particle 
model is adequate, and that in the superconducting state the excitations have 
something of the character of the single particles in the normal state, If the 
present feeling of optimism about these theories should continue to be justified 
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by more detailed experimental confirmation, perhaps this will be the surest support 
for the independent-particle model of a normal metal, for all types of electron- 
electron and electron-lattice interactions contribute in an important measure to 
the structure of the superconducting state. 

§ 2.  THE INDEPENDENT-PARTICLE M O D E L  
The  independent-particle model in its primitive form, as initiated by 

Sommerfeld and Bloch, disregards interactions between the electrons, except in 
so far as the mean Coulomb field may contribute to the potential in which each 
electron is moving independently. Under this assumption the problem of deter- 
mining the properties of the metal is well defined, in the sense that a specification 
of the periodic potential determines the permitted energy states for the electrons, 
and from this all the properties follow in principle. We shall not concern our- 
selves here with an account of the elaborate techniques which have been devised 
to carry out this programme in specific instances (Herman 1958, Reitz 1955, 
Slater 1956), but shall confine our attention to those aspects of the problem which 
are common to all models of this type, and which are particularly relevant to the 
special topics under review. 

We consider a particle moving in a periodic potential V(r), having the property 
that V(r + la + mb + nc) = V(r), where I ,  m, n are integers, and a, b, c vectors 
defining the parallelepipedal unit cell which, replicated through all space, gener- 
ates the periodic potential. The  wave equation for the particle in such a potential 
has solutions which are analogous to the plane wave solutions for a particle 
moving in a uniform potential. The  wave function takes the same form in each 
cell, but the phase of the function varies from cell to cell in a linear manner with 
position of the cell. Thus if R represents a point in a cell, measured from an 
origin in the cell, the wave function may be written 

$(r) = U( R) e-ik. (Zafmbinc) 

where r = R+la+mb+nc.  . * .  . * .(1) 

Clearly by the substitution U(R)eik.R=u(R), this can be re-expressed in a way 
which accentuates the similarity to a plane wave 

+(r) = u(R)e-iker. . . . . . .(2) 

If V(r) were constant, all solutions would have u(R) = constant ; the nature of 
the periodic potential reveals itself in the form of u(R) for any given k, as well 
as in the energy of the particle whose wave function is characterized by k. 

The  representation of +(r) as a function u(R) and a phase factor e-ik.r, as in 
(2), is not unique ; for we may write 

$(r) = u(R)e-ik.r = u’(R)e-i(k+K).r, 

provided that e-iK.r is a function of R alone, so that u’(R)e-iK.r = u(R). 
implies, from (l), that 

This 

e-iK. ( la+mblnc)  = constant. . . * . . . (3 )  
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The  constant can only be unity, and the vectors K which satisfy the equation 
form the reciprocal lattice. T o  construct this, consider the three vectors K,, K, 
and K, having the properties 

K,.a = 2n, K,. b = K,.c = 0, . . . . . .(4) 
and similarly for the other two. Then it is clear that if K is a sum of integral 
multiples of K,, K, and K, the exponent in (3) is an integral multiple of Zni, and 
(3) is satisfied. 

As an example of this construction consider a crystal structure which is 
common in metals, the face-centred cubic lattice of figure 1. This may be 
derived from a unit cell containing one atom, whose vectors are ao( - 1, 1, O), 
uo( - 1, - 1,O) and uo(l ,  0, l), where 2a, is the cube side. It is easy to see that 

- 2a,- - -n.ir~,------ 

Figure 1. The  face-centred cubic lattice, Figure 2. The  body-centred cubic lattice, 
showing unit cell containing one showing unit cell containing one 

lattice point. lattice point. 

the reciprocal lattice vectors which satisfy (4) are (via,,) ( -  1, 1, l), (.riao) ( -  1, - 1 , l )  
and ( r iao )  (0,0, 2) ; these define a cell which on repetition generates the body- 
centred cubic lattice, as in figure 2. Any vector K joining two points of this 
lattice may be added to k in (2) to give (with suitable modification of u ( R ) )  an 
equivalent expression for $(r). Thus the energy of an electron may be repre- 
sented as a periodic function of k ; if E(k)  is known within one unit cell of the 
reciprocal lattice, it is known for all k. As a matter of convenience it is usual to 
redefine the unit cell so as to exhibit more clearly its cubic symmetry ; any dissec- 
tion of the cell in figure 2, with reconstruction after translation of some of its 
parts through a reciprocal lattice vector, is a permissible redefinition, and the cell 
of figure 4 may be considered to arise in this way. It contains one lattice point 
as its centre, and by repetition fills all space and generates the body-centred cubic 
lattice. An equivalent construction for the face-centred cubic lattice is shown 
in figure 3. If the metallic lattice is face-centred cubic, figure 3 is the atomic 
polyhedron and figure 4 the Jirst Brillouin zone in reciprocal space ; while for a 
body-centred cubic lattice the diagrams are reversed, the atomic polyhedron having 
the form of figure 4 and the Brillouin zone the form of figure 3. 
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We have seen that a specification of E(k) within the Brillouin zone provides 
complete information about the solution of the wave equation, but it must be 
realized that for a given potential V(r) there is an infinite number of solutions 
corresponding to each k, having different energies and different u(R) .  This is 

4- 2a, - 
Figure 3. The  atomic polyhedron for 

a face-centred cubic lattice. 

\ 
\ 
\ 
\ 

/ 
\ 
\ 
\ 
/ 

1 

- 2 + 7  

Figure 4. T h e  first Brillouin zone for 
a face-centred cubic lattice. 

---2T/L-- 

Figure 5. c ( k )  for free electron in one dimension, with artificial zone structure imposed. 

simply illustrated by an almost trivial one-dimensional example, a particle moving 
on a line in a uniform potential so that E = Z2k2/2m.  Let us now divide the line 
into segments of length L,  thus artificially defining a cellular structure ; a typical 
solution of the wave equation may now be written 

$(.) = e-ikr = e2niX/L e-i(k+2n/L) 5 etc., 

in which the variation of $(x) in a single cell, u(X) ,  takes the successive forms 
1, ePniXJL , * * . ,  e2nniXIL, .. ,, and the value of k is correspondingly changed by mul- 
tiples of the reciprocal lattice vector 2r/L. The  curves of E(k) are shown in 
figure 5 .  The different parabolae correspond to different choices of K (= 2rz/L) ,  
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and the thickened and broken curves are the lowest two branches of the c ( K )  
relation in the periodic K-space. 

Let us now see what happens when V ( x )  is not constant, but varies periodically 
with period L. Then the two degenerate solutions at the point A may have 
their degeneracy removed if their wave functions combine with the periodic 
potential to produce a non-vanishing matrix element. For this to be so it is 
only necessary, since the two solutions at A are simple sine waves differing in 
wave number by 2n/L, that V(x )  shall have a Fourier component of wave number 
2-r/L, and this will commonly be the case unless the form of V ( x )  specifically 
excludes this particular component. Similarly the degeneracy at B is removed 
by a Fourier component of wave number 4 x / L .  The effect of a small periodic 
potential is illustrated in figure 6, from which it will be seen that the periodic 
branches have now separated and become continuous and differentiable functions, 

Figure 6. ~ ( k )  for electron in one Figure 7 .  As figure 6, but displayed in 
dimension, with small periodic 
potential, illustrating reduced 
and periodically extended zone 
schemes. 

extended zone scheme. 

while the original smooth parabolas have broken, so that there are energy gaps 
between the branches at all points. I t  is worth observing that the transition from 
figure 5 to figure 6 primarily involves a change of connectivity rather than the 
appearance of discontinuities-in both diagrams the curves are analytic but of 
quite different form. In  order to give in graphical form a complete specification 
of c ( k ) ,  only the portion of figure 6 lying within F 7ilL is necessary ; this is known 
as the reduced zone scheme. Alternatively, it may be convenient, especially if the 
c ( K )  curve can thereby be made to approximate to a parabola, to allow k to run 
between k CO and to display c ( K )  as a single-valued function, as in figure 7 ; this 
is the extended zone scheme. Finally, it will be useful to bear in mind that the 
reduced zone scheme may be repeated at will, as is begun in the lower curve of 
figure 6, to produce a multi-valued function c(K)  extending over all values of k ; 
this is the periodically extended zone scheme. 

The  change in connectivity of the ~ ( k )  curves, resulting from the removal of 
degeneracies at the edges of the Brillouin zone, can make considerable differences 
to the form of the lines and surfaces of constant energy when we treat the motion 
of a particle in two- and three-dimensional lattices. As an example, consider a 
square two-dimensional lattice as in figure 8, whose reciprocal lattice is the square 
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lattice of figure 9. It is not difficult to see that, in general, any reciprocal lattice 
vector K represents a possible component present in the Fourier analysis of the 
corresponding lattice potential V(r) into components of the type e-iK.r. For it 
is necessary, if this component is to be present, that ( l /N) C e-iK.(za+mb+nc), summed 
over all N lattice points, shall not vanish ; this is clearly ensured by the definition 
of the reciprocal lattice. I t  should be mentioned, though we shall pursue this 
matter no further, that this is not a sufficient condition for the occurrence of a 

Figure 8. Two-dimensional square Figure 9. Reciprocal lattice of figure 8, 
lattice. showing construction of zone 

boundaries, and a typical line of 
constant energy (for small peri- 
odic potential). 

Figure 10. Lines of constant energy in figure 9 remapped into reduced and (top right-hand corner) 
periodically extended zone scheme. Regions of lower energy are indicated by shading. 

given Fourier component. For the present example we assume that all Fourier 
components defined by the reciprocal lattice are present. 

Now, taking one reciprocal lattice point as origin, draw the perpendicular 
bisectors of all lines joining it to other reciprocal lattice points, as in figure 9. 
Then, from the construction, any point A on one of these lines (which are the 
boundaries of higher-order Brillouin zones) may be associated with a point A' 
such that AA' is a reciprocal lattice vector and 0-4 =OA'. Thus electrons 
whose wave vectors are OA and OA' have the same energy if V(r) is constant, 
and are capable of having their degeneracy removed by the lattice potential when 
this is taken into account. If the lattice potential is only very small the separation 
of originally degenerate levels will also be very small, so that a line of constant 
energy, originally a circle, is only slightly deformed as it crosses the Brillouin 

4 --f 
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zone boundaries. The  new line of constant energy may be remapped into the 
first Brillouin zone to give a reduced zone picture, as shown in figure 10, of which 
one corner shows the beginning of the periodic extension of the diagram. In 
this way it will be seen how the removal of degeneracy breaks up the line of 
constant energy into three separate branches, which are to be regarded as contours 
on three distinct sheets of the function E(k). Moreover, as the shadings reveal, 
in two of these branches the regions of lower energy lie within the closed curves, 
as in the original circle, while in the third they lie outside. 

Figure 11. Section of periodically extended zone scheme for face-centred cubic lattice, showing 
The  section shown is indicated by a broken energy surface near corners of the Brillouin zone. 

line in figure 4. 

In  three dimensions, the variety of possible forms of energy surface is even 
greater. If the surface is closed and wholly within the first Brillouin zone, the 
periodically extended zone scheme merely repeats it as a lattice of isolated closed 
surfaces. If the surface lies near the corners of the first Brillouin zone, as in 
figure 11, periodic extension again produces a lattice of isolated closed surfaces 
(in this case six to every unit cell of the body-centred reciprocal lattice) ; and if 
in figure 11 the states of lower energy lie closer to the centre of the zone, then 
each little closed surface in the extended scheme encloses states of higher energy. 
A third possibility, which is particularly to be expected with lattices having a 
high axial ratio, is shown in figure 12, the extended zone scheme giving an array 
of tubes. And lastly, a multiply-connected surface may arise from contacts with 
the zone boundary; a simple example may be seen in figure 14. Just as in 
figures 9 and 10 a very small lattice perturbation of the circular energy curve 
could result in quite a complex picture in the extended zone scheme, so a repetition 
of the construction for a three-dimensional lattice gives a remarkable variety of 
constant energy surfaces. A particular case has been discussed by Gold (1958), 
the remapping (with rounding-off of corners) of the sphere which in figure 4 
would have a volume just equal to the cube, and which therefore lies entirely 
outside the first Brillouin zone. One of the resulting surfaces in the extended 
scheme is shown in figure 13. 

In  the preceding discussion we have assumed that E is a continuous function 
of k, and indeed for most purposes this is a reasonable assumption. Strictly, 
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however, in a finite sample, only discrete values of k are permitted, such as will 
allow the wave function to satisfy boundary conditions at the sides of the sample. 
If we employ the conventional periodic boundary conditions, and a rectangular 
sample, the permitted values of k are such that an integral number of wavelengths 

Figure 12. Tubular energy surface in periodically extended zone scheme. 

Figure 13. Tubular lattice, suggested by Gold as possible energy surface for lead. 
(After Gold 1958.) 

will fit into the sample. For a sample of sides A, B and C, we must have 
k, A = 2n, T ,  k, B = 29,  T ,  k, C = Zn, T ,  and this implies that in reciprocal space 
the permitted values of k form a rectangular lattice, whose unit cell has volume 
8n3/V, where V = ABC, the volume of the sample. The  exclusion principle 
allows each of the states represented by a lattice point to be occupied by not more 
than two electrons (one of each spin), so that the maximum permitted density of 
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occupation is V/4.rr3 electrons per unit volume of reciprocal space. From figure 4 
it will be seen that the volume of the Brillouin zone for a face-centred cubic lattice 
is 4.rr3/aO3, so that the zone will hold V/aO3 electrons. Now in a volume V ,  from 
figure 3, there are QV/aO3 atoms ; therefore the Brillouin zone will hold two 
electrons per atom. This is a general result for those structures whose unit cell 
holds only one atom. More complex structures (such as that of tin) need more 
careful discussion, but we shall confine our attention to metals of simpler form. 

At the absolute zero the conduction electrons occupy the lowest available 
energy states, and therefore fill all levels up to a certain energy, the Fermi energy, 
such that the number of states contained within the corresponding energy surface 
(Fermi surface) is just equal to the number of conduction electrons. For one- 
electron atoms, such as the alkalis and noble metals (if we assume that the core 
electrons can be ignored), the Fermi surface encloses a volume equal to one-half 
the volume of the Brillouin zone. We might therefore hope that it would be a 
fairly simple closed surface lying within the zone ; we shall see that this hope is 
probably not realized in some at least of the metals of this group. For no other 
metals can we reasonably expect any simplicity of this sort, and our previous 
discussion leads us to believe that the form of the Fermi surface may be very 
strange, probably breaking up into several separate sheets of which some may 
have complex connectivity in the periodically extended scheme, It is this expecta- 
tion which makes doubtful the value of attempts to discuss the properties of real 
metals in terms of model E ( k )  relations which are easy to handle analytically, such 
as the two-band model in which the Fermi surface consists of two sets of ellipsoids. 
Detailed analysis of these models is certainly of value in developing and comparing 
mathematical methods which may be applied to more difficult situations, but very 
little meaning can usually be attached to the parameters which are chosen to fit 
a particular set of experimental data. 

At temperatures above the absolute zero those electrons with energy within a 
few times kT of the Fermi energy will be thermally excited, the probability of 
occupation of a given energy state being expressed by the Fermi distribution 
function {exp(e-- ()/AT+ 1}-1, in which [ is chosen so that the total number of 
occupied states is equal to the number of electrons. For most purposes the 
distinction between [ and the Fermi energy eo is negligible. It is clear from this 
distribution function that the thermal energy is proportional to the number of 
electronic states per unit energy range at the Fermi surface ; if this is written 
as No, the number of empty states below the Fermi surface is of the order NokT ,  
the electrons which occupied them at O'K having been excited by energies of the 
order kT, so that the thermal energy is roughly N 0 k *  T*  (the true value, obtained 
by integrating the Fermi distribution, is &r2N0k2 T 2 ) .  Thus the specific heat of 
the electrons is proportional to the temperature, C = y T ,  the constant y being 
$n2 No k 2 .  Measurements of y ,  for which reliable data now exist for many metals, 
enable No to be computed. In  the independent-electron model No may be related 
to the velocities of electrons on the Fermi surface, in the way we shall now discuss. 

We have so far concerned ourselves only with individual electronic states, 
represented by plane waves of definite wave number k and frequency w ( =  € / E ) .  
The  picture can be made to resemble a classical particle-picture by constructing 
wave-packets out of a group of plane waves centred on a particular value of k. 
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This group moves through the metal with a group-velocity gradkw, e.g. the 
x-component of the velocity is (l/ti)a~/ak,.t The  motion of the group deter- 
mines the motion of the electron which it describes, so that it is permissible to  
say that an electron described by a wave vector k is travelling through the metal 
with velocity v(k) = ti-l grad, E, contributing to the current an amount ek-l grad, E 

and to the momentum mk-l grad, E. In  general, one must distinguish between 
the real momentum mk-l grad, E which can be detected in principle by macro- 
scopic ballistic methods, and the quasi-momentum (crystal momentum) Rk which 
is a formal construction based on analogy with de Broglie's relation for free 
particles. I t  will be seen that the electronic velocity, being proportional to grad, E, 

is directed normal to a surface of constant energy and is inversely proportional to 
the separation of neighbouring energy surfaces. In  this way it is immediately 
related to the density of states. For if dS is an element of area of the Fermi 
surface, construct a right cylinder having base d S ;  then the volume of this 
cylinder contained between the Fermi surface and the surface of energy de greater 
will be d S / I g r a d , ~ l d ~ ,  and since for a sample of volume V there are V / 4 d  
states per unit volume of reciprocal space, the cylinder contains VdSd€/[4n3 I grad, E I] 
states. Hence, by integration over all parts of the Fermi surface, we have that 

- 
where ( l /uo)  is the average value of the reciprocal of the Fermi velocity (the 
velocity of an electron at the Fermi surface), and S is the total area of the Fermi 
surface. 

The  wave-packet picture of an electron in motion enables us to see immediately, 
by classical analysis, how the electron reacts to applied electric and magnetic fields. 
In  a uniform electric field E the rate of transfer of energy from the source of the 
field to the electron is ev. E ; since i can be written as k .  grad, E ,  it follows that 

k .  grad, E = ( e / & )  E ,  grad, E, 

which is satisfied if tik = eE, the rate of change of crystal momentum being equal 
to the force on the electron. Thus every electron is affected in the same way 
by an electric field, and the distribution of occupied states in reciprocal space is 
simply shifted uniformly at a rate k = eE/R. One may allow for zone boundary 
effects by plotting the occupied states in the periodically extended zone scheme, 
and allowing the whole diagram, except the zone boundaries, to shift uniformly, 
while only taking account of those occupied states which lie within the first zone. 
From this it is obvious that the distribution in a completely filled zone is unchanged 
by a field, and therefore contributes nothing to the current. If the zone is not 
filled it is easy to write down an expression for the rate of increase of current 
density under the influence of a uniform field. Consider a small area dS of the 

t T o  demonstrate this we observe that the phase of a plane wave at ( t ,  r) is given by the expression 
4 = ut- k .  r. h-ow any recognizable feature of the wave group owes its character to the particular 
phase-relationship existing between the various plane-wave components, and if we move through 
the lattice at such a velocity v that this relationship is maintained we shall keep in step with the group, 
To effect this v must be such that when r = vt, gradi, 4 does not change with time, i.e. 

gradi,(w-k.v)= 0. 
Since gradk ( k .  v) = v, v = gradi, w. 
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Fermi surface, imagined, as at O’K, to be a sharp division between occupied and 
unoccupied states. After time dt  the boundary of occupation has shifted by 
eEdt lE ,  so that a new element of occupied volume edtE.dS,% has appeared, con- 
taining edtE , dS/(4.rr3k) electrons per unit volume of metal. Since each electron 
moves with velocity E - l  grad, E,  the contribution of this element to the current 
density is e2 dtE . dSgrad, ~ / ( 4 . r r ~ h ~ ) ,  so that we may write for the rate of increase 
of the total current density 

(6) 

the integral being taken over the whole Fermi surface. For a crystal of cubic 
symmetry this expression must be independent of the orientation of E ,  and is 
therefore unchanged by averaging over all orientations of E relative to the crystal 
axes. From this averaging it follows immediately that 

e2 E e2 E S G  j = +  I grad, E J  d S  = ___ . . . . . .  1 2n3 t ~ 2  12.rr3 ( 7 )  

This expression may also be used with reasonable accuracy for a polycrystalline 
sample of a non-cubic metal. It may be observed that for a quasi-free-electron 
model of a metal, having N electrons per unit volume, and with E given by 
R*k2/(2m*), m* being the effective mass, the radius of the Fermi sphere, k,, is 
(3.rr2N)’l3, S = 4 ~ ( 3 n ~ N ) ” ~ ,  vo = tL(3.rr2N)”3/m*, and therefore j = Ne2 Elm*. 

The  steady increase of current does not continue indefinitely in a real metal 
on account of collisions between the electrons and lattice imperfections, e.g. 
impurity atoms or lattice waves. As a result the displacement at any region of 
the Fermi surface ultimately reaches a steady limit, and it is not uncommon to 
assume for convenience that the approach to the limit is exponential ; at a time t 
after application of the field the displacement 4 k  is given by Ak,(l - e-l/T), where 
Ak, is the limiting value and T the relaxation time, which may vary with position 
on the Fermi surface. If this law is obeyed, it is clear that the initial rate of 
increase of Ak is just Ak,]., SO that we may immediately modify (6) to give an 
expression for the steady current 

, (8) 

For a cubic or polycrystalline metal the conductivity takes the form, from (7)) 

Here I ,  which may vary with position on the Fermi surface, is the mean free path, 
defined as o,,T, and t is its average value taken over the Fermi surface. We shall 
return later to a somewhat fuller discussion of the relaxation process. 

I n  a magnetic field the classical interpretation of the wave-packet leads us to 
expect a Lorentz force e H  x v i  on an electron, and this expectation is more or 
less (though perhaps not perfectly) justified by detailed quantal analysis. Since 
the velocity v is directed normally to a surface of constant energy, the Lorentz 
force always acts tangentially to such a surface, so that the energy remains 

t From now on we shall work in electromagnetic units. 
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unchanged by the magnetic field. But the crystal momentum Ek changes at a rate 
equal to the Lorentz force, so that k travels around the orbit in reciprocal space 
defined by the intersection of the constant energy surface with a plane normal 
to H, i.e. k, = constant if H is taken parallel to the x-axis. Correspondingly, in 
real space the electron describes an orbit, which bears a very simple relationship 
to the orbit in reciprocal space. For we may write the equation of motion 

k = (e/%) H x i ,  . . . . . .(lo) 
from which it follows that the variations of the position vector r (strictly, the 
components of r in the plane x = constant) are related to those of k by a factor 
%/(eH), constant in constant field, and by a rotation through ~ / 2 .  Thus the orbit 
in real space, projected on a plane normal to H, has the same shape as the k-orbit, 
but is larger by a factor E/(eH)  and rotated through ~ / 2 .  This result says nothing 
about the x-component of the motion, parallel to H, which may in general be 
quite a complicated periodic function superposed on a mean drift ; by following 
the variation of the x-component of v around the k-orbit the nature of this motion 
may be elucidated in any particular case. If the energy surfaces are spherical or, 
more generally, axially symmetric about the x-axis, the drift velocity is constant 
and the electron describes a regular helix. 

Since the motion in a magnetic field is periodic in the plane x = constant we 
may expect quantization to occur. An exact treatment for electrons in a periodic 
lattice has not been given, but the rigorous theory of free electrons finds a simple 
interpretation in the Bohr-Sommerfeld quantum theory, which can be extended 
heuristically (Onsager 1952) to the more general case to give results of consider- 
able interest and value. What is involved here is an evaluation of the phase 
integral $ Pd% 

which is set equal to a multiple of h or to ( n + p ) h  where 9 is an undetermined 
phase factor. In  the phase integral the proper momentum conjugate to the 
position vector r is not Ek but Ek--A, where curlA = H. If now we take K 
and p, measured from equivalent origins, as the components of k and r in the 
plane normal to H, (10) may be integrated to take the form EIC = e H  x p, so that 
the phase integral becomes $ (Eu - en ) .  dp, 

which may be rewritten as 

Since 

is twice the projected area of the orbit in real space and 

[ e H  , (p x dp) - eA. dp]. 

$ P X d P  

$ 

A . 4  

is @, the flux contained within the orbit, we see that 

g p d q  = e@ = (n+p)h .  
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This defines the permitted orbits, whose projected areas may only be jn+ 9) times 
h/(eH) ; correspondingly, in reciprocal space the only permitted regions of the 
energy surfaces are those intersections with planes k,  = constant having areas d 
in accordance with the expression 

d = (n + p) 27ieH/A. * .  . . . .(11) 

This result, which we shall call Onsager's theorem, holds the clue to the under- 
standing of the de Haas-van Alphen effect which we shall consider in detail later. 
For the present, however, we note that for many purposes, particularly in the 
discussion of transport phenomena, it appears to be possible to distinguish features 
which owe their existence to quantization from those which are uninfluenced by it. 

P 

"y R 
Figure 14. Multiply connected energy surface in periodically extended zone scheme showing : 
(a) electron orbit, (b )  hole orbit, (c) open orbits, ( d )  extended orbit : P, Q, R, axes of open orbits. 

The geometrical similarity of the orbits in real and reciprocal space enables us 
to discuss their principal features with reference to reciprocal space only, and to 
observe that (with one exception, which occurs when two bands are degenerate 
at the same value of k, and with which we shall not concern ourselves) all types 
of orbit are described in terms of sections of the periodically extended zone struc- 
ture by planes normal to H. Thus orbits may be closed, open or extended, as 
illustrated in figure 14. Closed orbits may be of two types, the electron orbit 
(14(a)) which encloses states of lower energy, so that the velocity vector is directed 
outwards, and the hole orbit (14(b)) which encloses states of higher energy so 
that the velocity vector is directed inwards. If one looks along the direction of H 
(from South to North) an electron in an electron orbit is seen to rotate clockwise, 
while an electron in a hole orbit rotates anti-clockwise, as if it were positively 
charged. An electron in an open orbit (if orbit is the right word) describes a 
wavy path whose general direction is straight (14(c)). An extended orbit (14(d)) 
is one which extends in reciprocal space over a region which cannot be contained 
in one Brillouin zone, however this is placed. I t  should be noted, therefore, that 
an orbit such as 14(b), although it may cross the boundary of the Brillouin zone 
whose centre is the origin of k, is not an extended orbit according to our definition, 
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since by shifting the centre of the zone the orbit can be wholly enclosed. It is 
also worth noting that when the energy surface in the extended scheme is multiply- 
connected, as in figure 14, it is not possible to ascribe ' electron-like ' or ' hole- 
like ' character to any part of the energy surface. The  same point may, with 
different orientations of the magnetic field, belong to electron or hole orbits, or 
to extended or open orbits. 

Before leaving the topic of orbits let us calculate the frequency of rotation in 
the orbit, the cyclotron frequency of the particular orbit. Consider two orbits in 
reciprocal space, in the same section normal to H, being sections of the energy 
surfaces E and E + de. At any point their distance apart is de / [  grad, E I or de/ (Ev)  ; 
so that if d K  is an increment of length measured along the orbit, the area of the 
annulus between the orbits is 

Thus 

Now the Lorentz force on the electron is eoH, so that the time taken to traverse 
the element d K  is RdKlevH, and the periodic time of the orbit is 

A$$ or -__ E 2  d d  
eH eH de ' 

We have therefore an expression for the cyclotron frequency 

2neH dd' -l 
w =-+I E 2  . 

For free electrons having a component of wave number k in the plane normal 
to H, d = nk2 and E = h 2 k 2 / 2 m  = R 2 d / 2 n m  ; so that w, = eH/m, which is 
independent of the energy of the electron. In  general, however, w, is different 
for each orbit. If we define the cyclotron mass of a given orbit by the equation 
mc* = ( R 2 / 2 n ) ( d d j d ~ )  we may write, analogously to the free electron case, 

I t  is interesting to compare (11) and ( 1 2 )  : if the quantum number in (11) is 
reasonably large so that only a small fractional change of E is involved in changing 
from one permitted level to the next, we may treat mc* as sensibly constant and 
determine the energy difference between two levels, corresponding to A d  being 
equal to 2neH/k, 

A E  = - A d  = Ew,. 2neH 

An oscillatory field in resonance with the orbit has thus a quantum energy which 
is just right for exciting a transition between permitted levels. This result, which 
is precisely paralleled by the Bohr orbits of hydrogen-like atoms when the quantum 
number is high, is a good example of the correspondence principle, and shows 
how, as we remarked earlier, it is often permissible to neglect quantization of 
orbits and to treat the problem classically. 

13 
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$ 3 .  T R A K S P O R T  P H E N O M E N A  

3.1. T h e  Method of Trajectovies 
It is necessary now to consider in a little more detail the process of attainment 

of equilibrium under the influence of electric and magnetic fields. -4 complete 
discussion of all the points involved would be too long for the present article, 
and we shall do little more than develop the particular point of view which will 
be most useful here. At any instant the electron distribution is described by the 
distribution function f(r, k), which specifies the fraction of available states actually 
occupied by electrons of position coordinate around r and wave number around k. 
In  general, when electric fields are present f(r, k) varies with position, and from 
a quantal point of view there is a limit to the degree of precision with which the 
variation of f ( r ,  k) can be specified, in accordance with the uncertainty principle. 
If, for example, we wish to describe a situation in which f(r, k) is a rather rapid 
function of position, we must be able to confine the wave function of one electron 
to a rather small region, and this implies the construction of a wave packet from 
a considerable range of wave numbers. Thus we have lost the right to specify 
the wave number with precision, and this may lead to difficulties, particularly at 
very low temperatures where f(r ,  k) changes from unity to zero over a very small 
range of k across the Fermi surface. A complete resolution of this problem is 
far from straightforward, but it appears to be permissible in most cases to ignore 
it and treat the electrons as classical particles except in so far as they obey Fermi 
rather than Boltzmann statistics. A not unrelated difficulty arises, as already 
mentioned, in a magnetic field which is strong enough that the energy separation 
of the permitted orbits given by (11) is comparable with kT, and again we ignore 
it for the present. 

We proceed then on the assumption that the electrons may be pictured as 
particles. In  the absence of collisions of the electrons with each other or with 
lattice defects, Liouville’s theorem is applicable, the distribution function in the 
neighbourhood of any electron remaining constant as the electron moves under 
the influence of the applied fields. Since the value off  around any one electron 
is a function of r, k and t ,  we have, in general, 

df = (?& + i .  grad,f+ k . grad,f 
r, k 

so that in the absence of collisions, when dfidt  = 0 

($) = - i .  grad, f - k .  grad,f 
r, k 

e 
E = -v,grad,f- - ( E + v x  H).grad,f 

since tik is equal to the force on the electron. If the electrons are capable of 
colliding with impurities or with one another, there is an additional contribution 
to the rate of change off, which may be written [8f/at],,,, so that the equation for 
f( r, k, t )  takes the form 

e + v . grad,f+ - ( E  + v x H) . grad, f = [8f/8t],,,. 
r. k K 
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This is the Boltzmann transport equation in the form suitable for transport prob- 
lems in metals. If it can be solved for given applied fields the electric and thermal 
currents immediately follow from the form of f ( r ,  k, t ) .  

The Boltzmann equation is the starting point for what may be called the 
conventional approach to transport problems, and undoubtedly it is the best 
method when the collision term [af/at],,,, is complicated in form. Often enough, 
however, a simplified form of [8f/t?t],,,, is assumed, especially when the spatial 
variations of E and H are sufficient in themselves to create severe mathematical 
difficulties, and it may then be more revealing to abandon the Boltzmann equation 
and go back to first principles (Shockley 1950, Chambers 1952 a). We may 
illustrate this by a rather special case which happens to be particularly useful for 
the present discussion ; we consider the situation where the temperature is uni- 
form and we are only concerned to evaluate the electric current density, on the 
assumption that at every point on the Fermi surface a relaxation time is definable. 
By this we imply that if in the absence of fields f = fo, then [8f/8tJcoll = - (f -fo)/T, 
T being the relaxation time. Let us now follow a group of electrons through the 
metal, taking as our sample those electrons whose values of k cover a small area 
of the Fermi surface and have a sufficient spread of energy that the whole tail of 
the Fermi distribution is represented. We shall assume that the range of velocities 
involved is small enough for the group to spread very little, so that each electron 
in the group has effectively the same history. The  effect of H is to cause the 
group to describe a curved trajectory, which may be calculated in principle, but 
not to change the energy of any electron; thus the Fermi distribution is not 
perturbed. Along this trajectory, however, the electrons may experience an 
electric field which changes their energy, and so perturbs the distribution. Con- 
sider such a perturbation PE, caused by a field E at a time to ; at a later time to + t 
collisions will have reduced this perturbation to p E  Just the same result 
would have occurred if the field had had magnitude E e d 7  and there had been no 
collisions. I t  is therefore possible to allow for the effects of collisions by a modi- 
fication of the applied electric field so as to reproduce the destruction of informa- 
tion. Next, consider the calculation of the current density contributed by this 
group of electrons. Since the unperturbed distribution function fo carries no 
current, we need only consider the current due to  the perturbation. Now each 
electron in the group suffers the same history, and therefore the effect of E is to 
shift the Fermi tail to a different energy, but otherwise leave it unaltered. Of 
course, groups of electrons taken from different parts of the Fermi surface will 
have traversed different trajectories and experienced different fields, so that the 
shift will vary with position on the Fermi surface. At any point the equilibrium 
and disturbed distributions will look as in figure 15, in which f is plotted against 
K,, the component of k normal to the Fermi surface. If the displacement is h 
the area between the curves is independent of the shape of the Fermi tail. Thus 
the calculation could equally well have been carried out by assuming that the 
Fermi surface marked a sharp division between filled and unfilled states, as at O'R. 
Since the density of states is 1/(4.ir3) per unit volume of real and reciprocal spaces, 
the normal displacement A of an area dS of Fermi surface is equivalent to an 
increment of AdS/(4.rr3) electrons per unit volume of real space, moving with the 
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Fermi velocity vo. Thus the increment of current density is ev0AdS /4r3  and 

(13) 

Before considering applications of this result, one comment is perhaps useful. 
The  method of trajectories need not be specialized to the degree we have used 
here ; it is, for example, quite straightforward to allow T to be a function of energy 

Figure 15. Displaced Fermi distribution. 

as well as of position on the Fermi surface, and to consider thermal as well as 
electrical effects, thus deriving rather general expressions for thermal conduction 
and other phenomena under conditions which vary in time and space. In  dis- 
cussions of this method of trajectories (sometimes misleadingly called the kinetic 
method, as if the use of the Boltzmann equation did not involve the same kinetic 
principles) it is sometimes implied that the method is an approximation only 
suitable for rough calculations. This is true so far as concerns the assumption of a 
rather special form of collision term ; but within the framework of this assump- 
tion the results obtained are correct integrals of the Boltzmann equation. 

3.2. Spatially Varying Electric Fields 
The  use of the special form of the method of trajectories suitable for isothermal 

electrical conduction (which we shall call the hard Fermi surface method) may be 
illustrated by solving a problem which is relevant to much of the discussion in the 
following pages. Consider an infinite sample of metal within which is established 
a periodic electric field of frequency w and wave number v, having the form 

E ,  = E , ei(Wt-VZzl) 
z 0% 

The field will produce a current density J with the same periodicity, so that we 
may write 

Ji = aij(w, v) Ej.  
There is no difficulty in writing down a general expression for uii in terms of the 
geometrical form of the Fermi surface and other relevant parameters, but we shall 
only consider here some rather specialized cases, particularly concentrating on the 
behaviour under such conditions that the mean free path is much greater than 
the spatial period of the field, i.e. v l a l .  A further simplification is effected, once 
the x-axis has been fixed with respect to the crystallographic axes, by choosing the 
x and y axes to be the principal axes in their plane. Then uzy = 0, and we need 

. . . . . .(14) 
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consider only components of the types U,,, uzB and uzz. Let us take U,. first, 
letting E be directed along the x-axis, and for the moment taking w as zero, so 
that E, = Eo,ee-iuz. Then a typical electron at the Fermi surface passes through 
an alternating field, and if the free path is long, experiences very little resultant 
change of velocity. T o  calculate the change for an electron at (zo,to) we note 
that at time t its z-coordinate was zo+vz(t-to),  so that it was accelerated by an 
effective field 

E,, ( t )  = E,, exp - i(vzo + vv, [t - t o ] )  + 0 t - t  ).  \ 7 

Hence, from the rate of change of the x-component of momentum, eEeE, we derive 
an equation for the rate of displacement of the Fermi surface in the x-direction 

- i(vzo + vu,[t - to])  + - 
7 

which on integrating from -a to to yields the equilibrium displacement 

From (15 )  it is clear that when mor,  i.e. v Z 9 1 ,  the only contributions of 
significance to the current are from electrons moving nearly normal to z ,  when 
u,<vo. Thus for any section of the Fermi surface by a plane normal to the 
y-axis, as in figure 16, it is possible to delineate the effective points P,P’ as those 

Figure 16. Effective points on section of the Fermi surface. C is the centre of curvature at P. 

whose tangents are parallel to the z-axis. Only points in the near neighbourhood 
of the effective points have significant displacements A,, and to a good approxima- 
tion (which becomes exact as vl-tx), we may consider only this region and write 
v, = ZI, f / p , ,  in which 5 is the coordinate k, measured from an effective point, and 
py is the radius of curvature of the y-section of the Fermi surface at the effec- 
tive point. The  displaced area, j”A,df, is now easily calculated from (15) as 
~eEo,Ip,l/(Evzv). If the thickness of the plane section is dk,, the displaced area 
contains eEOx [ p, 1 dk,/(4.rr2 kzl,v) electrons for unit volume of metal, and each 
electron is moving in the x-direction with velocity uz. Hence we find the current 
density and the conductivity component for wave number v 

. . . .(16) 
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the integral being taken along the locus of effective points on the Fermi surface 
or surfaces. I t  will be seen that the expression is independent of 1 and q,, and 
depends only on a geometrical property of the Fermi surface (Pippard 1954 a). 

So long as vl is so large that the region around an effective point may be repre- 
sented as having constant curvature the current is by symmetry precisely parallel 
to the x-axis, and a,, = 0. This result does not hold when variations of curvature 
are important at lower values of vl, but we may expect when vl is reasonably large 
that the ratio crz2/a,, will be very small, It is easy to see that as vl tends to infinity 
azl also vanishes, for the only effective electrons have a negligible velocity com- 
ponent in the z-direction. We have thus demonstrated that in the limit of long 
free paths the x-axis is a principal axis of aiJ(v), which may be diagonalized so 
that only the terms o,, and a'u7d remain, and that these terms depend only on the 
geometry of the Fermi surface. These results enable the theory of the anomalous 
skin effect to take a very simple form, as we discuss later, and thus make the 
effect useful as an analytical tool. 

If we do not take w as zero the results are slightly altered in a way which is 
easily understood qualitatively. As an electron moves through the metal the 
phase of the oscillatory field changes, so that movement normal to x does not 
ensure a constant field. Since, however, the phase variation is that of a wave 
moving in the x-direction with velocity w/v ,  there will be an effective region 
centred about such points on the Fermi surface that z', = w/v .  So long, therefore, 
as w is much less than E ~ V ,  the form of the theory is hardly altered, and (16) is 
correct provided that p y  is taken at the genuine effective points. But when w is 
greater than z',,v the simplicity of the analysis fails, since there is no dominant 
effective region, and all parts of the Fermi surface contribute with comparable 
weight. It should also be remarked that the argument for the vanishing of as, 
loses its validity as soon as vv0/w is significantly large. 

3.3. Galcanomagnetic EfSects 
As a second example of conduction calculations relevant to our general study 

we consider the problem of the Hall effect and magneto-resistance, that is, uniform 
conduction in a magnetic field, with particular emphasis on the case when J and H 
are normal to one another. It is convenient to separate the effects due to electric 
and magnetic fields, and this can be achieved by the simple device of analysing 
the steady electric field into a time-sequence of impulses. We illustrate this by 
the free-electron model having spherical Fermi surface and constant relaxation 
time. Let the magnetic field be applied to an infinite sample along the z-direction, 
and between times t = 0 and t = dt apply a uniform electric field E,. This will 
set up a current density dJ,(O) according to the equation 

ATe2 
m dJ,(O) = -E, dt, 

the whole spherical Fermi distribution being shifted in the x-direction. Now 
because of the field H, the disturbed distribution precesses uniformly about the 
z-axis with the cyclotron frequency w, ( =  eH/m), and at the same time reverts 
exponentially to its undisturbed form with relaxation time T .  
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If we have a steady electric field, we have a superposition of contributions of the 
type (17) at all epochs t ,  so that we obtain the steady values of J, and Jg by 

The  relation between J and E is shown in figure 17, in which 4,  the Hall angle 
between J and E, is tan-l(w,~). Moreover, the triangle defined by aE and J is 

E G:’ 
Figure 17. Illustrating Hall effect. 

right-angled. In  a typical experiment to measure the transverse magneto- 
resistance of a metal it is the direction of current flow that is determined by the 
geometry of the sample, rather than the direction of E. From figure 17 it is 
clear that as H and q5 increase, the component of E in the direction of J remains 
constant at J/a, so that there is no magneto-resistance effect in this case. The  
component of E normal to the current flow is J la tan+ or JHINe, so that if we 
define the Hall coefficient R by the equation 

normal component of E = RHJ, 

we see that R is simply 1jNe. 
The  vanishing of the magneto-resistance effect and the constancy of the Hall 

coefficient are peculiarities of the free-electron model, not observed in practice, 
though the nearest approximation to them occurs with sodium for which there is 
some evidence that the free-electron model is not a bad approximation. If we 
extend this analysis to more general types of Fermi surface we observe the follow- 
ing generalizations to be necessary : 

(1) different orbits may have different cyclotron frequencies ; 
(2) electron and hole orbits must be treated as having opposite signs of w, ; 
(3) open orbits show no periodicities ; 
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(4) the oscillatory terms in (17) must be supplemented by harmonics of the 
fundamental frequency U,, since the disturbed distribution need not precess 
unchanged ; in the absence of collisions it will return after each revolution 
to its original form ; 

(5) the relaxation time may vary over the Fermi surface ; in general, indeed, 
a relaxation time will not be definable. 

If all these effects are taken into account the resulting expressions are complex 
and unrewarding, but it is easy to demonstrate some typical properties by a simple 
extension of the free-electron model. We assume the Fermi surface to consist of 
two spherical sheets, one containing N-  electrons and the other N+ holes, each 
having the same mass m and relaxation time T ,  but with equal and opposite cyclo- 
tron frequencies k U,. The analogues of (18) may now be written 

1V- - N+ UW,  TE, J, = ___- J,  = 4 
1 + U C 2 T 2 ’  N- + N+ 1 + u ~ ~ T ~ ’  

from which it follows that the resistivity, determined by the component of E 
parallel to I ,  takes the form 

. . . . . .  
N- + N+ 

and the Hall coefficient the form 

. . . . .  (N-  - N+) (1 + We2 T 2 )  R =  e( ( iv_+N+)2+(N--N,)2wc272)’  

(19) 

in which U is the conductivity in zero field, ( i Y + A T _ > e 2 r / m .  As the magnetic 
field, and consequently w,, is increased, p increases quadratically at first and then 
more slowly, finally levelling off at the value u-l(N- + N+)2/ (N-  - N+)2. At the same 
time the Hall coefficient changes from e-l(N- - N+)/(N- + AT+)2 to [(N- - N.+) e]-l. 
It is clear that the saturation of the magneto-resistance and the Hall coefficient 
is possible only if the numbers of electrons and holes are different, and that if 
this is so the value of the field strength at which saturation begins to be complete 
is determined by the condition 

. . . . . .  N- + N.+ 1 A-- N+ 1 .  
The particular results we have deduced concerning saturation and the limiting 
value of the Hall coefficient are of very wide validity, as we shall now demonstrate. 

Let the Fermi surface be such that for the particular direction chosen for H 
(taken as the x-axis) no orbits are open. If we consider a particular section 
k, = constant and apply an impulsive field Edt in an arbitrary direction, the dis- 
placed distribution in its subsequent precession may be expected to contribute 
currents of which no component need vanish. In  the absence of collisions the 
current in any direction may be resolved into three parts 

dJi = C,,. + I; aij(n) sin nw, t + 2 bijfn) cos nw, t E j  dt. . . . . . . (22) 
[ n  n 1 

Because of collisions there will be a steady decrement of dJ,, which may take a 
complicated form if the decrement in one period is large, for then differences in 
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relaxation at different points on the Fermi surface will show themselves. If, 
however, we have H so large that the decrement in one period is small, we may 
as a good approximation define a mean relaxation time i: for the whole orbit, and 
hence, multiplying (22) by and integrating from t = 0 to t = 03, obtain for 
the conductivity tensor in a steady field 

AIH2  B / H  CIH 
aij = - B / H  DIH2 EIH 

-C /H -EIH F 

. .(23) 

. , . . . . .(24) 

7 It is not difficult by analysing an orbit in detail to demonstrate this result, so that this appeal to 
reciprocity need be regarded only as a means of avoiding thought. 
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It follows then that the resistance and Hall coefficient tend to a constant value 
in this general case, provided that there are no open orbits. 

T o  calculate the limiting value of the Hall coefficient, consider a thin section 
of the Fermi surface bounded by parallel planes normal to H, and let there be 
s states per unit area of the section. In  the presence of steady fields H, and E, 
the rate of change of energy of an electron may be written 

E, 
H ,  

i = - ev, E, = - hk,, since jik, = ev, H,. 

Thus the electron does not describe in reciprocal space an orbit at constant 
energy E,,, but one in which the energy is E,,+(E,/H,)&~,. This second term 
defines the shift of the Fermi surface from equilibrium, from which the current 
contributed by the whole section may be written down. In  particular, the 

SE e y-component takes the form 
AJ, = J $ K , d k , ,  

Hz 
in which the positive sign is to be taken if the orbit is an electron orbit, and the 
negative sign if it is a hole orbit. Since the integral is simply the area of the 
orbit, it is clear that AJ, is just eE,.H, times the number of electrons or holes in 
the section, and that therefore 

J,  = (N-  - N+) eE,/H,, 
so that the limiting value of the Hall coefficient is [(N--N+)e]-l. 

This result indicates that a certain amount of information about the structure 
of the Fermi surface may be obtained from high-field measurements of the Hall 
effect, while at the same time a complete picture is unlikely to emerge. If, for 
example, all surfaces are closed, the numbers N- and N+ are independent of 
orientation, so that the limiting value of the Hall coefficient should be isotropic. 
Thus the presence of closed Fermi surfaces and something about their volumes 
are disclosed, but no details about their shape. I t  is likely that the situation in 
which all surfaces are closed arises most frequently with metals of even valency, 
in which a Brillouin zone may be nearly filled, and the next higher zone contains 
a few electrons ; in this case N- = N+ and no saturation of the magneto-resistance 
is to be expected. Another, more interesting, case is that in which there is limited 
contact of the Fermi surface with the zone boundaries and the extended surface 
is multiply connected, as in figure 14. Even for those orientations which yield 
no open orbits the numbers of electrons and holes are likely to vary with direction 
of the magnetic field, The  observation of a saturating magneto-resistance com- 
bined with a variable saturating Hall coefficient may prove useful in elucidating 
the topography of the Fermi surface, particularly in the monovalent metals which 
may be taken to have only one sheet to their Fermi surfaces. But the multiply- 
connected Fermi surface may yield highly extended and open orbits, and one 
must be careful not to be misled by these into misinterpretation of the results. 
It is worth devoting a little space to this matter, to show the influence of open 
orbits on the magneto-resistance and Hall coefficient. 

The  important thing to appreciate is that the open orbit is rather a rarity.? 
t Note added in proof.  This is not true. A fuller discussion will be found in the note at the end 

of this article. 
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An electron in an open orbit describes a path in reciprocal space which waves 
periodically about a straight line ; the direction of this line will be called the axis 
of the orbit. I t  is easy to delineate all possible axes as those straight lines which 
can pass indefinitely through the periodically extended reciprocal space without 
intersecting the Fermi surface. Three such lines are shown as P, Q and R in 
figure 14 ; it is clear that the axis is well defined and will usually coincide with 
a crystallographic axis of low index. This method of constructing the axis pro- 
vides a necessary condition which they must satisfy, but not a sufficient condi- 
tion-even if the plane normal to H contains one of the axes, there may still be 
no open orbits, as may be seen immediately from the figure. I t  is clear then 
that we can expect to find open orbits only when H lies in a plane normal to one 
of the orbit axes, and not always then. Moreover, the possibility of having 
simultaneously open orbits with two different axes is confined to one particular 
direction of H, normal to both ; for the surface of figure 14 this does not occur 
at all, since if H lies along the direction of P the two sets of axes of open orbits R 
and Q intersect and small closed orbits form in the interstices of their inter- 
sections. 

We now consider the limiting behaviour in high fields when open orbits 
having a single axis are present. As the electron moves through reciprocal space 
in the general direction of the axis, it moves in real space along a similar per- 
pendicular path. The  greater the field, the less important the effects of collisions, 
and in the limit the direction of electron motion is strictly confined to the plane 
normal to the orbit axis. In  this plane the response of the electrons to the electric 
field becomes independent of H. Thus the electrons describing open orbits tend 
to become strictly two-dimensional conductors. At the same time the components 
of aij contributed by other electrons moving in closed orbits tend to zero as H-l 
or (except for usa) and the conductivity tensor has a limiting form 

O I /  1 1  asin20 asin 8 cos 0 

in which 8 is the angle between E and the orbit axis. The  resistivity psz tends to  
infinity, as expected from the physical argument, except when 8 = 7712 ; more 
detailed analysis shows that pzs increases as H 2 .  This is the same law as may be 
expected in the other non-saturating case, N- = AT+ ; the two cases may possibly 
be distinguished experimentally through the behaviour of the Hall coefficient, but 
we shall not develop the argument here. 

If the orientation is such that the plane normal to H does not quite contain 
any orbit axes, we may expect to find highly extended rather than completely open 
orbits. These will only behave differently when H is so large as to allow com- 
plete revolutions of the extended orbits between collisions, and under these circum- 
stances the magneto-resistance will probably increase to a large value before 
finally saturating in very high fields indeed. ,4 similar sort of effect may also 
occur if the collision probability is highly anisotropic. The  circumstances in 
which this is particularly likely occur when there is rather small contact between 
the Fermi surface and the zone boundary, so that the connecting links between 
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neighbouring regions of periodically extended reciprocal space are thin. It is 
then possible for scattering which changes k by only a little to move an electron 
from an electron orbit to a hole orbit, and so to alter its motion completely. This 
possibility has not been examined in detail, but it seems likely on these grounds 
that an electron may have difficulty in completing an orbit which runs close to 
such a critical region, and we shall term such orbits non-viable. They may not 
exist, but their possible existence should be borne in mind in view of the influence 
they may have on delaying saturation of the magneto-resistance until exceedingly 
high fields have been reached. It may be pointed out that small regions of high 
scattering probability are difficult to detect in ordinary conductivity measure- 
ments, since the major part of the conductivity is contributed by large regions of 
low scattering probability. But when magnetic fields are present such small 
regions become much more important since they affect all electrons whose orbits 
pass through them. 

Experimentally the situation is fairly clear, so far as the facts go, but puzzling ; 
for many comparatively simple metals, like copper, have a magneto-resistance 
which, after an initial quadratic variation, settles down to a linear variation with 
field which continues, apparently indefinitely, well beyond the point where satura- 
tion might have been expected (Kapitza 1929). Unfortunately, almost all the 
work has been done with polycrystalline samples, and it has recently been con- 
jectured (Ziman 1958) that this is the origin of the effect, which represents an 
average between orientations which saturate at different values of the field as 
well as some which do not saturate at all because of open orbits. T o  justify this 
conjecture rigorously demands an analysis of the behaviour of a polycrystal in 
which each crystallite exhibits a different anisotropic conductivity, and it is probably 
easier to study single crystals experimentally than to carry through this analysis. 
I n  any case the information which is potentially available from such a study is 
far greater than anything a polycrystal can yield. I t  is pleasing to note that a 
serious experimental programme along these lines has apparently begun recently 
(Alekseevski, Brandt and Kostina 1958, Alekseevski and Gaidukov 1958). 

It must be remembered that the whole of the foregoing analysis has been 
based on the semi-classical wave-packet picture, and that this is particularly 
suspect in high magnetic fields, where the quantization of the orbits reveals itself 
in the magnetic behaviour of the metal. We have seen that the condition for 
saturation of the magneto-resistance is that u C 7 B l  ; since Ac, the separation of 
neighbouring quantized orbits, is hC, the condition for saturation is simply that 
Ac 9 ZIT, which can be seen by reference to the uncertainty principle to imply that 
collision broadening of the levels is small in comparison with their spacing. T h e  
condition for saturation is thus the condition for breakdown of any obvious justi- 
fication for the semi-classical approach. It is probable, however, that the results 
of the semi-classical method have still a certain validity. A great many of the 
observations on magneto-resistance have been made at such temperatures that 
Ac < kT, so that through thermal excitation the characteristic oscillatory effects of 
quantization are not apparent in the thermodynamic properties nor in the resistance 
and Hall effect. When the conditions are such that A c z k T ,  the oscillatory effects 
(Schubnikov, de Haas-van Alphen, etc.) may appear in the magnetic and transport 
properties, being particularly noticeable in bismuth and graphite but detectable 
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in other, more typical, metals. The  oscillations in resistance are, however, super- 
posed on a general trend which appears to be of the type we have been discussing, 
and it seems that a clear empirical separation is possible between effects which are 
and are not essentially dependent on the quantization of the orbit. This conclusion 
may be justified theoretically, as will be indicated briefly later (see p. 214). 

Many of the outstanding problems in the interpretation of the galvano- 
magnetic effects might ~ l l  be resolved by a detailed study of high-field magneto- 
resistance and Hall effects in single crystals of a metal whose Fermi surface has 
been determined by other methods. If the observed behaviour should turn out 
to be intelligible by semi-classical arguments, as one would hope, the way will 
be open for an attempt to interpret the far more involved effects at moderate 
field strengths, where the detailed shape of the Fermi surface and the variation 
over it of velocity and relaxation time all play their parts. 

$4, ANALYSIS  O F  S P E C I A L  P H E N O M E N A  

4.1. Introduction 
We have devoted some space to the galvanomagnetic effects because they are 

among the simplest transport phenomena which appear to be capable of yielding 
fairly specific information on the electronic structure of metals. Many other 
phenomena have from time to time been invoked as evidence supporting or refuting 
particular theories, and we may mention in this category the following : electronic 
specific heat, soft x-ray spectra, optical and infra-red absorptivity, electrical and 
thermal conductivities, thermo-electric effects. 

The  recent analysis by Heine and Cohen (1958) of the monovalent metals may 
be cited as an example of the use to which this type of information may be put ; 
it may enable one to conclude that the Fermi surface of a given metal does or 
does not touch the zone boundary, but it hardly goes further than this. It is to 
be hoped that other methods, including galvanomagnetic effects, may in the 
course of time make unnecessary such nice weighing of indirect evidence, and we 
therefore devote no more space to the topics listed above, but pass straight on to 
the potential sources of more direct information. 

The  experimental methods which we shall proceed to analyse in some detail 
are the following : 

(1) de Haas-van Alphen and related effects ; variation with magnetic field of 
magnetic susceptibility, electrical and thermal conductivity, Hall effect, 
etc., which are periodic in H-1 and associated with the quantization of 
orbits in a magnetic field. 

(2) Anomalous skin effect ; high-frequency conductivity of a pure metal when 
the mean free path is much greater than the skin depth. 

(3) Cyclotron resonance ; the skin effect in a magnetic field, particularly under 
such conditions that the high-frequency field is in synchronism with the 
electron orbits. 

(4) Magneto-acoustic effects ; variations in absorption of ultrasonic waves in 
a magnetic field, associated with the relative sizes of the wavelength and 
the electron orbits, or with resonance between electron orbits and acoustic 
vibrations. 
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Of these effects the last three may be understood in quasi-classical terms, that is, 
classical ideas supplemented by the exclusion principle ; we have, indeed, already 
laid the foundations of our discussion in the analysis leading up to equation (16). 
Only for the first group of effects must the quasi-classical approach be abandoned 
for the semi-classical in the sense of the type of argument used to prove Onsager’s 
theorem. In the following discussion the effects will necessarily have to be taken 
one at a time, and it may be overlooked that they have one feature in common. 
Each has this characteristic, that the observed behaviour, under ideal conditions, 
depends on the properties of a small group of electrons, the particular group 
being selected by crystal orientation, magnetic field direction or other controllable 
parameters. Moreover, the behaviour depends in a comparatively simple way on 

Figure 18. Permitted orbit surfaces for free electron metal. (After Chambers 1956 b.) 

the properties of this group, so that by patient amassing and interpretation of 
data it becomes feasible to build up a fairly detailed picture of the variation in 
reciprocal space of the properties concerned. In  (l), (2) and (4)) for example, the 
property is the actual shape of the Fermi surface, q,(k) ; in (3) (and in (1) also) it 
is the velocity and its variation over the Fermi surface. 

4.2. The de Haas-van Alphen and Related Eflects 
The de Haas-van Alphen effect has been reviewed fully by Shoenberg (1957) 

and Chambers (1956 b), and we shall not discuss it in great detail. Following 
the semi-classical approach we construct on each plane in reciprocal space normal 
to H those curves of constant energy which are permitted orbits, having areas 
given by equation (ll), in which we shall take the phase factor p to be 4, being the 
correct value for a free-electron gas. The  full diagram of permitted energy sur- 
faces (orbit surfaces) will then consist of a set of tubes of, in general, variable 
cross-sectional form. Only in simple cases like the free-electron model will the 
tubes be cylindrical, and parallel to H,  as in figure 18. If, for example, the energy 
surfaces are ellipsoidal, the orbit surfaces are elliptical cylinders, inclined in general 
to H. The  degeneracy of the orbital states is such that the mean density of 
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states in reciprocal space is unchanged by the field. There is thus no gross 
change in the electronic energy with field, as is clear experimentally from the very 
small diamagnetism of most metals. There are, however, small changes associated 
with the relative dispositions of the permitted orbits and the Fermi surface. In 
order to show how this comes about we shall treat a not-uncommon special case, 
in which the surface concerned contains only a small fraction of the conduction 
electrons. Under these conditions the other electrons serve to maintain a constant 
Fermi energy, supplying or abstracting electrons as necessary so that at the absolute 
zero the orbit-surfaces are filled up to the points at which they coincide with the 

Figure 19. Energy levels in a magnetic field; (a) continuum in zero field, (b)  collapse of orbital 
levels into highly degenerate discrete spectrum (spin neglected), (c) splitting of levels by spin. 
The  levels above are empty and are indicated by broken lines. 

Fermi surface in zero field. If the Fermi energy is unable to stay constant the 
difference in behaviour is small enough that we need not discuss it here. 

The energy levels 
allowed to the electrons in this section form a fairly evenly spaced succession as 
in figure 19 and are just sufficiently degenerate to hold the electrons which occupy 
the same energy range in the absence of the field. Each of the levels is split into 
two by the electron spin interaction with the field, but we shall for the moment 
ignore this, as it is easier to correct the result for the effects of spin at the end. 
Since all the levels below the Fermi energy eo are occupied, and all above are 
empty, the energy of the electrons in this slice amounts in all to the same as if in 
the absence of a field the Fermi level were at the point E ’ ;  E‘ is determined as 
that point, half-way between two permitted levels, which lies nearest to eo. If E’ 

and eo coincide, the energy of the section is the same as in zero field, but otherwise 
it is greater. For if E’ > eo, the reservoir must supply electrons at energy eo whose 
energy must be raised by an average amount of $(E’ - eo) each, while if E‘ < c0, 

Consider then a section of thickness dk, cut normal to H. 
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the section can hold less than its zero-field quota, the rejected electrons with 
energy less than being raised by $(eo- E') on the average in order to enter the 
reservoir. Thus the effect of quantization of the orbits is to raise the mean 
energy of the electron assembly as well as to cause it to oscillate. The  increase 
of mean energy is easily seen to be proportional to H 2  and since the magnetic 
moment M is -dc?/dH, 6 being the total energy, the average of M is negative 
and proportional to H ,  i.e. there is a steady diamagnetism, which in fact is 
temperature-independent. If we use this argument to calculate the Landau 
diamagnetism we arrive at the correct value for a free-electron gas, but apparently 
not otherwise, as pointed out by Chambers (1956 b). T o  take proper account of 
the ionic lattice is a difficult matter, and we say no more about it. There is no 
reason to doubt the essential applicability of the semi-classical method to the 
periodic terms which are what really concern us. 

T o  return to the section dk,, let its area in zero field bed,,, so that for unit 
volume of metalskit contains do dk,/4n3 electrons. From (1 1) the permitted 
orbits have area (n  + t )  2neH/h. Therefore coincidence of E' and E ,  occurs when- 

2ne . . . . . .  
eve rd ,  = n x 2neH/h, or 1 - = a x -  

H E d o  * 

This result shows that the variations in number and energy of the electrons in 
the section have a constant period when plotted against 1/H, as is accurately 
verified by experiment. I t  is instructive to examine the order of magnitude of 
the periodicity predicted by (25). Since from now on we shall on several occasions 
wish to quote typical values of the parameters involved in particular experiments, 
we shall do so with reference to a hypothetical ' standard metal ' whose definition 
and properties are described in the Appendix. For this metal (25) takes the form 

I :H = 2.1 10-9%. 

This means that in a field of 105gauss, n is about 4800, so that there are 4800 
permitted levels below the Fermi level. If the electrons are free, the levels are 
equally spaced, and the spacing is 2.1 x which corresponds to a temperature 
of 1 3 " ~ .  This can also be seen by remembering that the separation is ZuC,  where 
W, is the cyclotron frequency, 1-8 x 1OI2 radians/sec in the present example. If 
the surface is small, containing only lov3 electrons per atom, do is one hundred 
times smaller, and n is about 48. If the effective mass of the electrons is still the 
free electron mass, the separation of levels is still about 1 3 " ~  in a field of lo5 gauss. 
Since the oscillatory effects depend for their observation on this separation being 
greater than the spread of electron energy due to thermal excitation, it is clear 
that they are likely to be observed only at rather low temperatures ; this is indeed 
so, although when the effective cyclotron mass is small, as often happens on small 
Fermi surfaces, the temperature effect may not be so restrictive. 

If n is fairly large, the oscillations will be reasonably evenly periodic when 
plotted against H ,  the period (i.e. the change in H which changes n by unity) 
being 2neH2/hdo .  In  figure 20 are plotted the periodic variations of the relevant 
properties of the section dk,. Figure 20(a) shows AN, the variations in the 
number of electrons in the section ; this varies linearly with H ,  with sharp breaks 
as an orbit crosses the Fermi level and suddenly empties into the reservoir. Since 
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each level contains as many states as a volume of 2~eHdkJE would contain in zero 
field, the discontinuity in A N  is eHdk,/2.x2E. At integral values of n the energy 
takes its minimum value, varying parabolically, as in figure 20(b), except for 
discontinuities of gradient at half-integral values of n. At such points the excess 
number of electrons in the section is &eHdk,/4.rr2E, with an average excess 
energy of 5 $Ewe each. Hence, from (12)) the range of variation of A b  is 
e2H2dFz,/[8.rrE2(d~/d€),1, the derivative being taken at the Fermi surface. The  

A I  1 

n n-1 n-e 

Figure 20. Illustrating origin of de Haas-van Alphen and Schubnikov effects as a consequence of 
The  vertical the variation with H of different properties of electrons in a plane section. 

broken lines indicate the field strengths at which (25) is satisfied by integral values of n. 

magnetic moment AM,  being -dc?/dH, is, like AN,  a linear function of H with 
discontinuities of edk,/[2.rr2E(d1nd/de),], and is shown in figure 20(c). The  other 
two curves do not concern us yet. 

The  saw tooth oscillations of AM owe their asperity to the sharp cut-off of the 
Fermi distribution at O'K. At any other temperature thermal excitation rounds 
off the variations in a way which can be most easily described in terms of the 
Fourier components of AM. The amplitude of the rth harmonic must be multi- 
plied by X/sinhX, in which X is written for 2.rr2rTIT', kT' being the energy 
separation of successive levels, i.e. Ewe. For the standard metal in a field of 105 
gauss, for which we found T'  to be 1 3 " ~ )  the factor at 1 ' ~  is about l*5r/sinh(1.5r), 
i.e. 0.71, 0.30 and 0.10 for the fundamental, second and third harmonics respec- 
tively. A good deal of the harmonic content is thus eliminated, though a certain 
departure from strictly sinusoidal wave-form may still be observable, but only at 
rather low temperatures. 

14 
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It is clear from figure 2O(c) that the fundamental of the oscillation is of the 
form sin(Rdo/eH), so that we may take Rdo/eH as the phase + of the contribution 
to AM by the section considered. Now sin+ is a very rapid function of do, 
while the amplitude of the contribution, being proportional to (dlnd/de)o-l, is a 
slow function. This enables us to sum the contributions of all sections very 
easily. For to a large extent they cancel one another out, except in regions where 
do is locally stationary with respect to k,, i.e. where the cross section normal to H 
passes through an extremum. Such a region makes a relatively large contribu- 
tion at a constant phase. T h e  contributions of various sections at a given value 
of H are readily summed by means of a phase-amplitude diagram. If we measure 
k, from a point where + has an extremal value +o (say a maximum), we may write + = +o-ck,2,  where c is a constant. Since + varies by many cycles in a short 
range of k,, we may take (dlnd/de), to be substantially constant, and take as an 
element of the phase-amplitude diagram a vector ds of length dk, and phase 
+ o - ~ k , 2 .  But this we know to be the construction which yields Cornu’s spiral, 
so that we can immediately infer that the resultant of all sections is the closing 
vector of the spiral, and this lags in phase behind the central vector by 5714. Since, 
therefore, the phase of the resultant is uniquely linked to the phase of the central 
vector, the oscillations of AM for the whole surface will have the periodicity 
characteristic of the maximal area. If there are several extrema (maxima or 
minima) there will be a corresponding number of periodicities. I t  is not necessary 
that the extremal areas shall enclose filled states-extrema1 hole orbits should 
contribute equally with electron orbits to the de Haas-van Alphen effect, as should 
extended orbits in principle, though these may be expected to give very short 
periods and low amplitudes, and be very hard to observe. 

We shall say little here about the techniques of observation of the effect, since 
they are fully discussed by Shoenberg (1957). The  impulsive method which he 
has developed is particularly suited to observations in fields of about lo5 gauss. 
The  specimen, in the form of a fine monocrystalline wire, is placed in a solenoid 
through which is passed a heavy discharge from a bank of condensers. The  
field rises to about lo5 gauss and then decays again, the whole discharge occupying 
about 20 milliseconds. While the field varies smoothly, the magnetic moment of 
the specimen oscillates very rapidly if the de Haas-van Alphen effect is present, 
and the oscillations may be detected by a search coil surrounding the specimen. 
A typical oscillogram of the signal is shown in figure 21. T w o  frequencies are 
present, but other crystals and other orientations of the same crystal may give one 
or three or more, depending on the number and topography of the Fermi surfaces. 

The  discussion of the periodicity of the de Haas-van Alphen effect has been 
straightforward ; the amplitude is not so simple. The  factors which are known 
to contribute to determining the amplitude in a given field are as follows : 

(1) The  curvature d 2 d o / d k , 2  at the extremum : the smaller this is, the larger 
the expected amplitude. 

(2) The temperature : as already mentioned, this contributes to the amplitude 
of the fundamental frequency a factor X/sinh X ,  where X = 2r2 kT/Rw,. 

(3) Collision broadening of the levels : for the effect to be appreciable, the 
electron must have a reasonable chance of completing the orbit. If i: is the average 
relaxation time around the orbit the contribution to the amplitude is a factor 
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exp(-27r/wcs). It is, of course, important to remember that the average value 
of T around an orbit may be quite different from the average over the whole Fermi 
surface, particularly if we are right in our supposition that near points of contact 
with the zone boundary there may be regions of high scattering probability. 
Non-viable orbits contribute no de Haas-van Alphen effect, and it would be 
erroneous to infer from the absence of an observable effect in any particular 
direction that the topography of the Fermi surface is such as to exclude closed 
extremal orbits. 

(4) Lattice broadening of the levels : this is likely to be important only in very 
special orientations for which the extremal orbit has rather sharp corners as it runs 
close to a zone boundary. The  discussions which have been given of this point 

Figure 21. Oscillogram of de Haas-van Alphen effect in lead. The heavy slanting line is a 
trace of the variation of H. (After Gold 1958.) 

(Harper 1955, Brailsford 1957) are physically rather obscure, but it appears that 
the effect may be interpreted semi-classically in the spirit of Onsager’s (1952) 
approach. What is neglected in the latter is the fact that the form of c(k) is 
determined by a specific lattice periodicity, and the electrons are not moving in a 
uniform background potential. The  degenerate levels of the free-electron theory 
correspond to similar orbits around different centres in real space, and in the 
periodic lattice these different centres may be differently situated in the unit cell. 
Now the wave function of the electron is not sharply localized, so that the influence 
of the centring of the orbit should not be very marked. It will, however, be most 
marked when the orbit has sharp corners, for in the neighbourhood of these the 
wave packet describing the electrons becomes particularly small in real space. 

(5) Electron spin : the effect of spin is to double all the levels, so that instead 
of a set whose energy separation is eH&/m,* we have two similar sets shifted by 
geHTi/m, m being the real electron mass, and g a splitting factor to allow for the 
possibility that spin-orbit coupling may modify the effective spin moment. The  
degeneracy of each set is half the degeneracy we have hitherto assumed, neglecting 
sp in ;  and since each contributes the same fundamental frequency but with a 
phase difference of 27rgmc*/m, the effect is to introduce an amplitude factor 
cos(mgm,*/m). For the rth harmonic the factor is cos(mgm,*/m). Very little is 
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known about the values of g in real metals, but it appears that in some semi- 
conductors and in bismuth it may become very large, so that even although m,* 
may be extremely small, gm,*/m may be of the order of unity. This has been 
adduced by Cohen and Blount (1960) as an explanation for the anomalous phases 
of the de Haas-van Alphen oscillations in bismuth. 

These are the principal theoretical contributions to the amplitude, so far as is 
known. There are also experimental influences which tend to reduce the ampli- 
tude, such as mosaic structure of the specimen and inhomogeneity of the field. 
The  consequence of all this is that at present little information can be extracted 
from the absolute amplitude of the effect. This does not prevent the temperature 
variation from being used to determine mc*, on the assumption that the other 
causes of amplitude reduction are constant. The  de Haas-van Alphen effect is 
therefore able to determine the angular variations of both the extremal cross 
sections and their derivatives with respect to energy. The  former may be used 

Figure 22. Fermi surface having no central extremal area. 

under favourable conditions to deduce the shape of the Fermi surface uniquely, 
and the latter the variation of electron velocity over the Fermi surface. Lifshitz 
and Pogorelov (1954) have shown that if the surface is centro-symmetric and 
convex, so that in each orientation there is only one extremal section, passing 
through the centre of symmetry, there is a unique procedure for deducing the 
shape from the variations of periodicity, and under similar restrictions the same 
holds for the determination of the velocity. This is a very valuable result, but 
even so it does not guarantee that there will be no ambiguity of interpretation, for 
one cannot normally be sure that the Fermi surface satisfies the conditions of the 
theorem. This is especially true for a situation such as that shown in figure 22, 
where the Fermi surface, though centro-symmetric when considered as a whole, 
is split into two mirror images, neither of which has central symmetry. For any 
orientation of field each contributes the same periodicity, and there is no way of 
telling that there is not just one surface of a different shape. One could, for 
example, probably devise pseudo-spheres, like smoothed tetrahedra, whose 
extremal areas were independent of orientation, and which could occur in pairs 
and be indistinguishable from a single spherical surface. A second example of a 
surface not satisfying the conditions of the theorem of Lifshitz and Pogorelov is 
shown in figure 23, which is to be pictured as a dumb-bell-shaped surface of 
revolution. For magnetic fields in the plane of the diagram, the variation of 
cross section with orientation is sketched in figure 24, the branch ( U )  being the 
central section, and ( b )  the non-central section. At P they coalesce, since in this 
case there is a range of angles for which there is only a central extremum. This 
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situation should not be difficult to recognize in practice, especially as at the point 
of coalescence the second derivative d2d,/dk,2 vanishes, and the oscillations ought 
to have a particularly large amplitude. Thus although the formal method of 
Lifshitz and Pogorelov may be inapplicable here, it should not be impossible to 
reconstruct the surface from the data. ,4s a final example of ambiguity of inter- 
pretation, consider a cylindrical Fermi surface, such as might occur in a highly 
anisotropic metal like graphite. For a field inclined at an angle 8 to the axis, the 
area of all sections is dn sec 8, where dn is the normal cross section ; rotation 
about the axis produces no change, and the cross-sectional shape of the cylinder 
is indeterminate. With these examples we leave the de Haas-van Alphen effect 
for the present, but shall return later to discuss some of the results which have 
been obtained by its use. 

Closely related to the oscillations of magnetic moment are the oscillations in 
the transport coefficients, first observed as resistance oscillations in bismuth by 

Figure 23. Dumb-bell-shaped surface Figure 24. Variation of extremal areas 
with field orientation for surface 
of figure 23. 

having more than one extremal area. 

Schubnikov and de Haas (1930), and later observed in both transverse and longi- 
tudinal magneto-resistance, Hall effect, thermal conductivity and thermoelectric 
effects in a variety of substances.? Wherever comparison between any of these 
effects and the de Haas-van Alphen effect has been possible, the periods of the 
oscillations have been found to be in complete accord. We shall discuss the 
connection between the effects by reference in particular to the transverse magneto- 
resistance and Hall effect, making use of the impulsive electric field method as 
before. The  electronic states in the magnetic field form a discrete spectrum of 
levels, and when the impulsive electric field Edt  is applied it causes a certain 
number of transitions to higher states. Typically, an electron in a certain stationary 
state has its wave function modified so that after the impulse it has an admixture 
of neighbouring stationary state wave functions. In  the free-electron metal only 
states differing in energy by one unit of E u c  will combine, and the resulting wave 
function describes a current-carrying state in which the current density is Ne2 E d t / m ,  

t T h e  following list, which is probably incomplete, indicates the variety of observations made : 
Bismuth : Hall effect and magneto-resistance (Gerritsen 2nd de Haas 1940, Alers and Wehber 

1953, Reynolds, Hemstreet, Leinhardt and Triantos 1954, Connell and hIarcus 1957). 
Thermal conductivity and thermoelectric power (Steele and Bahiskin 1955). 

Graphite : Hall effect and magneto-resistance (Berlincourt and Steele 1953, Soule 1958 a). 
Zinc : Electrical and thermal magneto-resistance (Alers 1956). 
Indium arsenide : Magneto-resistance (Sladek 1958). 

Note also the related oscillatory magneto-absorption of light in semiconductors (Zwerdling, I,ax and 
Roth 1957, Lax, Roth and Zwerdling 1959). 
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rotating about the z-axis with frequency U,. In  any other case the behaviour is 
more complex. The  immediate response of the system to a sharp pulse Edt is 
the same as for the free-electron model, a current density Ne2Edt/m. But this 
will result from the combining with the original state of many levels, some of 
which belong to different energy bands and give rise to very high-frequency 
rotational terms in the current density. 
is small in comparison with the band gap the contributions of inter-band transi- 
tions may be readily separated from those due to small-energy transitions, and if 
the former are ignored the initial current density and its subsequent oscillations 
are the same as given by the semi-classical calculation and expressed in the form 
of (22). That  is to say, the discrete quantization of the levels is not in itself 
responsible for any significant change in the transport properties. The  origin of 
the periodic changes in resistivity and Hall effect is to be found principally in two 
rather subsidiary effects of quantization, change in the number of electrons in a 
band and change in the relaxation time. A great deal of highly complex matter 
has been published on these effects, which appear to be basically simple. 

The  treatment which follows is an elementary analysis in the spirit of Lifshitz’ 
(1958) approach to the problem, which seeks to display the parallelism between 
the Schubnikov and the de Haas-van Alphen effects. The  results differ signi- 
ficantly from those of Lifshitz, who appears to ignore the oscillations of relaxation 
time which are the dominant cause of resistance oscillations. Argyres’ (1958 a) 
calculations of the transverse effects agree substantially with Lifshitz’ and are 
presumably open to the same criticism, although no such fault can be found with 
his analysis (1 958 b) of longitudinal oscillatory magneto-resistance. The  most 
recent treatment, by Adams and Holstein (1959), provides elaborate justification 
for the earlier results of Davydov and Pomeranchuk (1940), and for the semi- 
classical approach which we present here. It should be remarked that the dis- 
agreements between various workers are not concerned with the frequency of the 
oscillations and its relation to the Fermi surface, but only with the amplitude. 
The  difference between Adams and Holstein on the one hand, and Lifshitz on the 
other, is between an oscillatory variation of resistance which is observable with 
difficulty and one which lies well below observability. We believe the former to 
represent the true state of affairs. 

As with the de Haas-van Alphen effect, we consider for simplicity an assembly 
of electrons whose Fermi energy is maintained constant, so that the number of 
electrons within a section dks is a periodic function of field, as in figure 20(a), 
being related to the variations of magnetic moment by the expression 

If the separation of levels just above 

. e . . .  

The contributions to the conductivity tensor by this section thus fluctuate as if 
in the absence of a magnetic field the Fermi energy were changing so as to give 
the variations expressed by (26). We may define an effective mobility pLij for 
the electrons in this section by considering the change of conductivity consequent 
upon a change in the number of electrons it contains, and write 
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This definition takes care of conductivity changes arising both directly from 
changes in N and indirectly from the possible variation of free path with N ,  but 
it assumes that all parts of the Fermi surface other than the section considered 
remain unchanged. We may now write for the variations of the contribution of 
the section to the conductivity from this cause 

By the same arguments as before, most sections will contribute oscillations which 
cancel each other, and anything observed will arise at extrema1 cross sections. 
Thus the actually observed variations of AM and Aoij(l) will be related by the 
value of the coefficient in (27) which is appropriate to an extremum. For each 

This is not the whole story, however, for the other parts of the Fermi surface do 
not remain unchanged. In  particular, the density of states, taken over the whole 
Fermi surface, shows variations, and these are reflected in the conductivity since 
the probability of scattering of a given electron is proportional to the number of 
vacant states into which it may be scattered. A full treatment of this effect is 
complicated, but the general principle may be understood if we suppose that the 
mechanism of scattering is by impurities which scatter essentially isotropically, 
This means that the probability of scattering of any electron at the Fermi surface 
is changed in the same proportion, and this is the relative change in the total 
density of states. Now when the levels are quantized in a magnetic field the only 
permitted states just above the Fermi level are those which lie on the orbit surfaces 
as they cut the Fermi surface. The  contribution dNo of a thin section dk, to the 
density of states No is thus zero for most values of field, since usually the area of 
dk, will not be such as to allow an orbit surface. Periodically, however, the area 
will satisfy (1 1) and then dNo will be enormous ; in fact, dN, will vary with H as 
shown in figure 20(e). The  area under each &function is readily calculated from 
the fact that the average density of states is only slightly variable, so that the 
average value of dNo may be taken as field-independent. Hence for each cycle, 

This behaviour may be compared with that of d(AM)/dH, which can be seen from 
figure 20(d) to take precisely the same form, the area under each &function being 
just the discontinuity in AM in figure 20(c), i.e. ed~,/[2v2R(dlnd/dr)o]. 

Hence . , . . . .(30) 

By the same argument as before we relate the observed variations to the 
extremum, and write for each oscillatory component due to this cause 

. . . . . .(31) 
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Now the dependence of any component of uij on AN, is governed by its dependence 
on the relaxation time. Since to observe oscillatory effects we need w,? to be at 
least comparable with unity we may reasonably consider only the leading terms in 
the high field limit of aij as given by (24). Reference to (23) shows that the off- 
diagonal terms, varying as H-l ,  are independent of 7 ,  while a,, and uVV vary as 7-l 
and U,, as 7.  If then the leading term varies as H a ,  it varies as g a f l  and as 
‘ 0  47 -(a+1). The oscillatory components of aii therefore take the form 

. . . . . .(32) 
A u , ~ ‘ ~ ’  4iv0 H 2  d l n d  2 d 

No ( de )ex.d,(4M)* -- - - ( a + l ) -  = -(a+l)- ~ 

U i j  NO 

In  general, we may expect contributions of the types (28) and (32), though if 
there are several sheets to the Fermi surface there may be complicated interactions, 
since eo will not stay constant and account must be taken of scattering from one 
sheet to another. If there is only one band, eo certainly does not stay constant, 
but the total number of electrons does ; we then expect no contribution 4uii(1) 
(or at most a small one from the energy variation of free path) and only a contri- 
bution 4aij(2). In  any case, as may be seen by substituting the appropriate values 
for a free electron gas into (28) and (32), the ratio 4utc(2)/4~ii(1) is of the order of 
the phase of the oscillation, which we have found to be very large indeed for 
Fermi surfaces holding anything approaching one electron per atom. We shall 
therefore concentrate on 4aij(2) as giving an estimate of the magnitude of the 
effect which may be expected. 

T o  estimate the magnitude of the fundamental frequency contained in 4N0 at 
the absolute zero it is convenient to work from first principles rather than to 
use (31). We note first that for any section dk, the variation 4(dN0) is a &function 
whose fundamental has thus an amplitude equal to twice the mean value, i.e. 2m, where dn;i, is the contribution of the section to No in zero magnetic field, 
Next we observe that, when we use the Cornu spiral to sum the contributions of 
all sections, the resultant has the same amplitude as if a certain central section all 
oscillated in phase, all other regions being neglected. The  appropriate effective 
central section is that lying between the two planes which contribute oscillations 
differing in phase from the extremal oscillation by ~ / 4 .  T o  make the matter 
explicit consider a spherical Fermi surface of radius k,, so that the phase due to 
the extremal (central) section is nkko2/(eH). The effective central section is 
bounded by planes & k, such that ntikZ2/(eH) = ~ / 4 ,  i.e. k, = +(eH/k)”2. The sur- 
face area of the central section is 2nko(eH/k)1!2, a fraction (eHlE)’h/(Zk,) of the total 
surface area. I t  follows then from the foregoing argument that the relative ampli- 
tude of the fundamental oscillation is twice this, i.e. 

.(33) 

where n is the order of the oscillation as defined in (25). For the standard metal 
(see Appendix) n was found to be about 4800 in a field of 100 kG. We should 
expect the oscillations of uti to amount to about F 1% if there were no factors, 
such as temperature or mosaic structure, reducing the effect. It is clear, there- 
fore, that for this sort of metal we cannot expect a very striking phenomenon. 
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The effect is also in practice very weak in metals such as tin and zinc where the 
value of n is much lower. This is presumably because the oscillations are due to 
small portions of the Fermi surface whose total contribution to No is in any case 
small. Where the effect really becomes marked is in semi-metals like bismuth 
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Figure 25. Field variation of (a )  Hall coefficient and ( b )  transverse magneto-resistance in different 

(After specimens of graphite at various temperatures. 
Souk 1958 a.) 

The  field is parallel to the c-axis. 

and graphite and degenerate semiconductors like InAs and InSb where all Fermi 
surfaces are small. An example of the oscillations of resistivity and Hall co- 
efficient in graphite is shown in figure 25. It will be recollected that the measured 
coefficients are components of the resistivity tensor pij, not uij, and both diagonal 
and non-diagonal elements of aij participate in the oscillatory effects. 

Since the oscillations in pij are so intimately related to those of magnetic 
moment it is not to be expected that the information obtained from each should 
differ, and the question of which is to be preferred is solely a matter of convenience 
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and ease of observation. The Schubnikov effect has never been observed for any 
Fermi surface containing something approaching one electron per atom, perhaps 
only because no attempt has been made to observe it with such patience as has 
been lavished on the de Haas-van Alphen effect. It is possible that it may come 
into its own in the study of whiskers, which have already been shown by Shoenberg 
(1959) to be especially valuable for studying the de Haas-van Alphen effect in the 
large Fermi surface of copper. If whiskers of diameter as large as 0.01 cm are 
unobtainable, the magnetic observations become very difficult, but this limitation 
should not apply to resistance measurements. Since the radius of an electronic 
orbit in a field of 100 kG is about cm, it is probably only in whiskers less than 
loT3 cm in diameter that level broadening by collision with the surface becomes 
serious. 

4.3. The Anomalous Skin Effect 
The anomalous skin effect has been reviewed up to 1954 by Pippard (1954 c), 

and we shall adopt here a rather different point of view which is particularly 
suited to the present need, and which justifies and supersedes a heuristic pro- 
cedure known as the ineffectiveness concept. Since this procedure yields the correct 
answer but apparently bewilders some rigorists, the sooner it is justified and 
abandoned the better. 

We shall concern ourselves only with conduction in the surface layer, normal 
to the z-axis, of a plane semi-infinite slab of metal, all quantities varying with 
angular frequency w, so that ajax = 8/8y = 0,  ajat = iw. Then Maxwell’s equa- 
tions give as the relation between E and J (both directed along the x-axis) 

d2 E/az2 = 4 ~ i w J .  . . . . .  .(34) 

If the metal is isotropic there are no other components of E and J ; we make this 
simplifying assumption for the present. We shall analyse the field variables into 
their Fourier components, writing, for example, 

so that (34) takes the form 

in which J u t o h  has contributions from all current sources. In  order to find the 
field distribution in the metal we require an expression for the current density 
produced by a given field, and this also may be written formally in terms of the 
Fourier components 

This equation defines the conductivity component uV in the same way as in (14). 
Such a definition is immediately useful only if the metal sample is infinite in 
extent, and we must consider how to allow for the surface of the actual sample. 
4 particularly simple treatment is based on one first given by Klein (1944), which 
is applicable when the surface is a perfect reflector of electrons. Any electron 
leaving the surface after a collision with it has K ,  and k ,  unaltered while k, is 
reversed in sign. Its condition is exactly as if it had passed through a field on the 

v2 E ,  + 4.rriwJ,tot = 0, . . . . .  .(35) 

J, = U, E,,, with U,,( - v) = u,(v). . . . . .  .(36) 
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other side of the surface which was a mirror image of the field in the metal. We 
may therefore replace the actual problem by one in which an infinite sample of 
metal is subjected to a field having the property that E( -2) = E(z ) .  Such a 
field may be set up by a current sheet confined to the plane z = 0. 

We therefore suppose that there is a current I per unit width on the origin 
plane, having a Fourier spectrum I,, = IjZr. The total current component con- 
sists of I,, and the conduction current .I,, so that (35) now reads 

v 2  E,, + 4xiw(I/Zr + J,,) = 0. 
Combining this with (36) we find 

- 2iwI E 
’ v2 + 4niwa,, ’ 

so that * cosvzdv 

The  field distribution depends on the form of (T, ; in all the cases we shall be 
concerned with the form is such that E ( z )  decreases to zero as x increases, so that 
the field is confined to a layer near the origin plane. I t  is clear then that the 
total conduction current is just equal and opposite to the source current I .  T o  
apply this solution to the field configuration at the surface of a semi-infinite slab 
we can immediately write down the surface impedance 2, which is the ratio of 
E(O), the field strength at the surface, to the total current per unit length in the 
skin layer, in this case -81. Therefore 

When the electronic free path is so short that for any component contributing to 
(37) v Z < l ,  it is permissible to treat U,, as constant and equal to the usual d.c. 
conductivity cr. Under these conditions the normal skin ejfect prevails and (37) 
may be integrated to yield the well-known result 

2, = (1 + i)  J(Z.rrw/u). 

If, on the other hand, the free path is so long that for all components of importance 
in (37) v l $ 1 ,  we must use the result which is expressed in its extreme limit by 
(16), writing 

. . . . . .(38) 

where 

This result shows that in the extreme anomalous limit, when the limiting form (16) 
is applicable, the surface impedance is related to the radius of curvature of the 
Fermi surface around the effective zone, on which the velocity of the electron is 
parallel to the surface of the sample ; 2, is independent of the free path and of 
the Fermi velocity. The  condition of applicability of (16) may be expressed in 
terms of the resistive skin depth 6,, which is formally defined from 2 by the relations 

6 = 6, + i6, = Z / ~ T W .  . . . . . .(40) 
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It is easy to see from Maxwell’s equations that 6 so defined simply measures the 
value of E/(dE/dx)  at the surface, and hence the distance within which the field 
would fall to zero if it varied linearly with depth. There is no implication in the 
definition of 6 that the field falls exponentially, as it does in the normal skin effect ; 
in fact, in the anomalous skin effect it is not exponential and is rather troublesome 
to evaluate. For the present, however, we need only note that the values of v 
which dominate the integral (39) lie around S?-l, so that the condition of applica- 
bility of (16) is that l /S ,@ 1. For microwave frequencies 6, in the anomalous 
limit is of the order of cm for most metals, so that it is desirable to have I at 
least as great as 5 x lop4 cm. This implies the use of pure metals at low tempera- 
tures, since typically I is between and cm at room temperature. If 
values of l / S ,  as great as 100 can be achieved the correction needed to obtain the 
limiting value of 2, is only a few per cent, and can be estimated fairly reliably, 
as has been shown by Chambers’ (1952 b) experimental confirmation of the 
detailed theory due to Reuter and Sondheimer (1948). 

In  the foregoing analysis it has been assumed implicitly that E and J are 
parallel to one another and to the surface of the metal. This is true for an iso- 
tropic metal, but not in general. In  the extreme anomalous limit, however, the 
analysis holds with one simple modification. We saw (see p. 198) that in the 
limit the tensor aij(v) can be diagonalized, by a suitable choice of x and y axes, 
and that U,,(.) vanishes ; moreover, the principal axes depend on the Fermi sur- 
face alone and not on v. In  consequence we need not concern ourselves with 
possible normal components of E and J ,  and if we confine our attention to the 
principal axes in the x-y plane the result (39) is valid. For any plane surface 
there will be two principal values of Z,, which we may label Z,, and ZmU. If 
the current flow makes an angle + with the x-axis the surface impedance will 
follow the two-dimensional tensor law 

Z,(+) = Z,, cos2 + + Z,, sin2 +. 
These results were first obtained by means of the ineffectiveness concept, which 
is fully discussed elsewhere (Pippard 1954 a, c) and which assumes that only 
electrons moving nearly parallel to the surface can carry current. The present 
analysis justifies the physical idea behind the concept and renders it obsolete. 

The  assumption of specular reflection of electrons which hit the surface appears 
from experiment to be unsound, and is indeed theoretically improbable, for irregu- 
larities on an atomic scale are sufficient to cause large-angle diffraction of the 
de Broglie waves. I t  is almost certainly much nearer the truth to assume com- 
pletely diffuse scattering at the surface, which is the only other case which has 
been found mathematically tractable. Even this is of a different order of diffi- 
culty from the case of specular reflection, but it has been worked out by Reuter 
and Sondheimer (1948), again in terms of the Fourier coefficients of the conduc- 
tivity. 

. . . . . .(41) 

The  result takes the form 

Z = 4 ~ 2 i w / 1 ~ ~ 1 n  (1 + 47riw0,/v2) dv, 

and in the extreme anomalous limit 

2, = __ J3.rrw (1 +d3i), 
S 

. . , . . .(42) 
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which is 918 times the expression (39) for specular reflection. It is clear that the 
limiting value Z,  still depends only on the geometry of the Fermi surface and not 
on the mean free path or Fermi velocity. 

One final point in the theory which is worth discussing is the problem of 
retardation effects. So long as the frequency is low and the mean free path not 
too long an electron can execute its path while the field is sensibly constant. In  
normal conduction in a uniform field the breakdown of this condition, when 
W T ~  1, leads to a substantial change, the d.c. conductivity being replaced by 
a/(l +LOT). As we 
have remarked in deriving the form of uy, the criterion for retardation effects to be 
important is not that WT, but w/'u0v, shall be comparable with unity. This is 
equivalent in the anomalous skin effect to the statement that no serious modifica- 
tions are to be expected until the electron is unable to traverse the skin depth 
normally in a time short compared with the period of oscillation. Since 6 N 10-5 cm 
and vow 108 cm/sec, for most metals the critical frequency is about IOl3 sec-1, 
some 102-103 times the frequencies used in practice. The  effects of retardation 
are not negligible, but the correction to be applied amounts to no more than a 
few per cent. The  compensation for retardation effects is managed by a shift in 
the position of the effective zone, different for each Fourier component of the 
field, so that at too high a frequency the anomalous skin effect is not governed by 
a rather precisely defined effective zone, and the usefulness of the phenomenon 
as an analytic tool is diminished. But at microwave frequencies this limitation 
will only be felt with semi-metals such as bismuth (Smith 1959), where the Fermi 
velocity is rather small and the skin depth rather large. 

Up to the present the only detailed studies of the anisotropy of the surface 
resistance are those which have been made on tin (Fawcett 1955) and copper 
(Pippard 1957 a), both by calorimetric methods. The essence of the method is 
to let a microwave beam fall on a plane surface of metal which is mounted in vacuo 
in rather loose heat contact with the helium bath surrounding the apparatus. 
The  resulting temperature rise measures the power absorbed and hence the surface 
resistance. Details of the standardization of the apparatus can be found in the 
original papers. We shall not discuss the results obtained at this point, but 
merely comment on one or two general features. First, there is no discrimination 
of different sheets of the Fermi surface, as in the de Haas-van Alphen effect, so 
that analysis of a complex metal is virtually impossible by this means alone (though 
it may prove useful in combination with other methods). Secondly, it is abso- 
lutely essential t o  use well-prepared surfaces, so that the skin layer which carries 
the current is in all essentials the same as the bulk of the sample. This means 
that all traces of mechanical strain must be eliminated by etching and electrolytic 
polishing, and in addition the surface must be left with no asperities on a scale 
comparable with the skin depth. The  major experimental problem is indeed 
metallurgical-the microwave problems are comparatively trivial. On the other 
hand, there is not the need here, as in the de Haas-van Alphen effect, to obtain 
very perfect crystals, since small misalignments of crystallites do nothing to 
destroy the effect which is being observed. Finally, some comment on the 
analysis of the results is desirable. The  measured quantity is related to an 
integral of the radius of curvature around the effective zone. An analytical 

This effect does not occur in the extreme anomalous limit. 
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expression for this property in terms of the equation of the surface is very compli- 
cated and virtually useless. The  process of constructing a surface which will 
account for the observations is thus very tedious, and in this respect the method 
compares rather unfavourably with the de Haas-van Alphen effect. This, indeed, 
is our general conclusion, but there are exceptional metals, such as copper and 
silver, which are susceptible to analysis by the anomalous skin effect and which 
show it to advantage. In  a later section we shall compare the results obtained 
for copper by the two methods so as to display the peculiar merit of the anomalous 
skin effect in this case. The  question of the analysis of the results has been 
discussed also by Chambers (1956 b) and by Kaganov and Azbel' (1955)) making 
use of a slightly different formulation of the expressions for 2,. If the direction 
of the normal is related to that of the x-axis by the polar angles 8 and 4, the 
effective zone of the Fermi surface is characterized as that for which 8 = n/2.  
I t  is not difficult to  show that if + is measured from the x--x plane, the two principal 
values of R, may be written as J 3 n w / s  (see (42))) the principal values of s3 being 

In these expressions K(0, $) is the Gaussian curvature at (8,+), i.e. (p l  pJ-1, where 
p1 and pz are the two principal radii of curvature at that point. From this it can 
be seen that R,-3, the mean of Raep3 and R,y-3, gives the mean of s3, and hence 

- 

I t  is now pointed out that the theorem of Lifshitz and Pogorelov, applied to a 
complete set of data on the variation of this integral with crystal orientation, 
would enable K(8,+), and hence the Fermi surface, to be uniquely determined if 
the Fermi surface were convex and centro-symmetric. I t  seems to the present 
author that, as hinted by Chambers, this suggested procedure is of little practical 
utility. The  labour of obtaining complete data would be enormous : the Fermi 
surfaces to which the method is particularly applicable cannot be relied on to be 
convex : and finally, by taking the average of Rmx-3 and R,y-3 a lot of the signi- 
ficant information may be hidden. I t  may indeed be more generally true that the 
mathematical beauty of the theorem of Lifshitz and Pogorelov encourages an over- 
estimate of its practical value, and that a quicker way of analysing the data, whether 
on the anomalous skin effect or the de Haas-van Alphen effect, is by the use of the 
geometrical imagination and a fair amount of trial and error. 

Before leaving the anomalous skin effect let us remark on its use to determine 
the total area of the Fermi surface. It may be shown, for example from the 
relation between R,-3 and the Gaussian curvature, that the mean value of R,-3, 
taken over all crystal orientations, is related to the total area S of all sheets of the 
Fermi surface bv the expression 

- - 

. . . . . .(43) 
- 

If the anisotropy of R, is not too great, one may approximate to (Rm-3)av by 
(Rm)av-3 and thus obtain the value of S by a single measurement on a random poly- 
crystalline sample. A comparison of the value of S with that expected from 
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simple models may serve as a rough check of these models. For example, if the 
energy discontinuities at the zone boundaries are small, the Fermi surface, when 
plotted in the extended reciprocal space, may approximate to a sphere, with small 
deformations around the regions of intersection with zone boundaries. The  total 
area will be very similar to that of a sphere holding the same number of electrons, 
It is interesting, though not conclusive, that in aluminium, which Heine (1957 a) 
has suggested should have rather small discontinuities, the value of S is close to 
that of a sphere containing three electrons per atom (Chambers 1952 b, Faber and 
Pippard 1955). For most many-electron metals S is distinctly smaller than the 
free-electron value, and we may conclude that there are considerable departures 
from the spherical shape. The  value of S may also be used in conjunction with 
the specific heat constant y to estimate the mean Fermi velocity, since the density 
of states at the Fermi surface is (4~~h)-~JdS/z‘ , ,  i.e. 

. . . .(44) 

Such an estimate of the Fermi velocity might with advantage be compared with 
an estimate from the de Haas-van Alphen effect or from cyclotron resonance, for 
the two types of measurement involve different patterns of excitation ; thermal 
excitations produce excited electrons and holes all over the Fermi surface, while 
current-carrying excitations produce excited electrons on one side and holes on 
the other. If interactions between excited electrons and holes play any significant 
part in determining the energy spectrum near the Fermi level, one may expect the 
velocity deduced in the two ways to differ. Thus (44) applied to detailed inde- 
pendent measurements of y ,  S and U,  may serve as a critical check on the assump- 
tions of the independent-particle model. 

4.4. Cyclotron Resonance 
An understanding of cyclotron resonance in metals, which is a more compli- 

cated matter than the corresponding effect in semiconductors, involves a considera- 
tion of the effect of a magnetic field on the electrons in a metal exhibiting the 
anomalous skin effect. Two distinct experimental arrangements have been 
investigated, one in which the magnetic field is applied normally to the metal 
surface and the other in which it is parallel to the surface. I t  is the second which 
is of greater interest in the study of metals ; it was proposed and has been analysed 
in detail by Azbel’ and Kaner (1956, 1958). Their analysis is of very great 
complexity, to some extent unavoidable since an exact treatment such as they 
attempt involves real mathematical difficulties, altogether apart from the repellent 
obscurity occasioned by the generality of their model. Other published treat- 
ments of more specialized models are either avowedly (as Heine’s (1957 b))  or 
unwittingly (as Mattis and Dresselhaus’ (1958) and Rodriguez’ (1958 a) ) inexact. 
For the present we shall follow the latter’s lead, since the errors involved do not 
seriously affect the answers, and their physical interpretation of the phenomenon 
is sound enough. There is, indeed, no difficulty in understanding how the 
resonance comes about (see figure 26). If the field is parallel to the surface the 
electronic orbits can return again and again to the surface layer containing the oscil- 
latory field, provided that cot?$- 1, and if the successive traverses find the electric 
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field at the same phase each time, i.e. if o is an integral multiple of U,, the electrons 
can contribute very effectively to the conduction and the impedance may be 
expected to take a low value. Since the cyclotron frequency, as given by (12), is 
proportional to H ,  successive resonances should be evenly spaced in H-l. 

We shall now assume, incorrectly, that the treatment of the anomalous skin 
effect given in the last section can be taken over unmodified, so that we are con- 
cerned only to evaluate the Fourier components of the conductivity, U,. We 
shall discuss later the errors introduced by this assumption. They are not of 
great consequence so long as we are interested in the resonance phenomenon, 
since they are due to an incorrect treatment of surface scattering and the 
electrons involved in the resonance do not hit the surface. Even with this 
approximation the evaluation of o,(H) is in general rather lengthy, but by con- 
sidering only a limiting case we can shorten the work greatly. We therefore 

Figure 26. Electron orbit giving rise to cyclotron resonance. 

choose the conditions such that the size of the electronic orbit is much larger than 
the wavelength of the Fourier component of the electric field, and the relaxation 
time is so long that oC+$ 1. These are the conditions under which the resonance 
is most marked. 

Take the normal to the surface of the metal as the x-axis, and let the steady 
magnetic field lie along the x-axis. There are two directions of microwave 
polarization of interest, the electric field being either parallel or normal to H. 
We shall consider the latter first, and discuss the behaviour of an electron in a 
field E, = E, ei(wb-uz). As the electron goes round its large, not necessarily circular, 
orbit it suffers a rapidly alternating field from which it acquires practically no 
change of momentum. Only at the extrema1 values of x, where its velocity lies 
in a plane I = constant, does the cancellation of contributions fail. We may 
therefore concentrate on the region of the orbit where n is minimal, and suppose 
that in this region the orbit may be represented by a circular arc of radius r ; we 
disregard the x-component of velocity as irrelevant. The  phase-amplitude dia- 
gram of the electric field acting on the electron in its trajectory forms a Cornu 
spiral, so that, as on p. 216, we can represent the effect of one traversal of this 
region by supposing the electron to move in a uniform field for such a length of 
arc, J ( ~ v Y / v ) ,  as lies within one-eighth of a wavelength from the extreme point, 
the phase of the field being shifted by n/4 from that at the extreme. Hence if 
the electron passes its extreme point z at time t we may write for the change in 
momentum caused by one traversal 

2~ Y Y  @ = &o(2nr/v)1i2 ei(ab-,~-n/4), . . . . . .(45) 
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where icy is the velocity in the plane normal to H.  The previous traversal, at 
t - 2n/w,, caused a similar displacement ak,‘, of which a fraction exp [ - 257/(wc7)] 
survived the circuit ; the sum of all previous traversals is thus given by the 
expression 

where 
Ak, = F 6k,, 

to 

2nn (1+iuf)] = {l -exp  [-- 2n 
1,=0 w,? 

I t  is the oscillations of the factor F which cause the observed resistance oscillations. 
We must now move to reciprocal space to calculate the current at a given 

point 2, Figure 27 shows a typical Fermi surface, of which we select for study 
a plane section, normal to H, of thickness dk,. On this surface is drawn the 
effective zone, the locus of points where the normal is parallel to the surface of 
the metal; the effective zone cuts the section considered at 2. An electron 

Figure 27. Illustrating calculation of cyclotron resonance. 

represented by 2 is moving at the extreme of its orbit, and has suffered a displace- 
ment Ak,, as given by (46). An electron at 2’ is performing a similar orbit and 
has suffered a displacement Ak,’ which is the same as Ak,  in (46), except that if 
the electron is represented by 2’ when its depth in the metal is I the extreme 
position of its orbit is not x, and the phase of Ak,‘ is correspondingly different 
from that of Ak,. The phase-amplitude diagram of the contributions of electrons 
near 2 to the current at x is once more a Cornu spiral, and the same rule for 
summation applies, the effective length of arc in reciprocal space being obtained 
from the effective length in real space by scaling in proportion to the radii of the 
orbits in the two representations. Thus the total current is the same as if all 
electrons in an arc of length p,(277br>’/2 suffered the displacement Ak, of the 
electron at 2, pz being the radius of the Fermi surface in the plane of the section, 
but with a phase shift of n/4 which removes the phase shift in (45). Hence from 
(45) and (46), writing 1/4n3 for the density of states in reciprocal space, we have 
for the current density 

e2 I Ps I dk, . . . . . .(47) 
2572EV 

dJ,  = du,,(v, H )  .E,, where du,,(v, H )  = F 

In  deriving this result we have neglected two contributions to JU which might 
appear to be important. First, there is at least one other point besides 2 on the 
section dk, where the electronic velocity is parallel to the surface, such as 2” in 

15 
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figure 27. But if 2 represents an electron as near the surface of the metal as it 
can go, 2” corresponds to the electron having gone as far into the metal as its 
orbit allows. If an electron represented by 2” lies in the skin layer it will be 
prevented by the surface of the metal from completing its orbit, and it seems 
reasonable to disregard its contribution to do,,(v, H ) .  Secondly, 2” may corre- 
spond to the other end of an orbit of which 2 represents the region near the surface ; 
in any orbit there are two regions which contribute to J2/ and we have taken only 
one into account. The reason for this is that the relative phase of the two contri- 
butions is very sensitive to the exact value of v since by hypothesis ~ $ 1 .  In  the 
actual problem the Fourier components of the field in the skin depth are so phased 
as to combine constructively near the surface and to annul one another at depths 
as great as Y. It is therefore appropriate to regard do,,(v,H) as an average over 
a small range of v, the average contribution from the far end of the orbit being 
zero. For similar reasons, if the Fermi surface is not wholly convex so that 
there is more than one effective zone, the value of p z  in (47) is to be taken only 
on that effective zone which has a maximum value of k,, corresponding to the 
closest point of approach to the surface of the metal. Bearing in mind that for a 
convex surface only half the effective zone contributes to do,,(v,H), we see by 
comparison with (16) that, apart from the resonance factor F,  do,,(v,H) is not 
only independent of H within the range of validity of the calculation, but also 
takes the same value as in zero field. This should not be taken to mean that 
do,,(v,H) will be governed solely by the simple factor F in all fields, since our 
treatment is only valid when uc?$ 1 ; in particular, there is a difficult transition 
region between the high-field situation in which only one side of the effective 
zone contributes and the zero-field situation in which both sides contribute. 

T o  turn now to the case where the microwave field is parallel to H, the calcula- 
tion is readily modified to yield the result 

(48) 

where dk, is the y-component of the length of the effective zone cut off by the 
section dk, and p, is the radius of the Fermi surface on the effective zone in a 
plane normal to the y-axis. Thus for both polarizations of the microwave field 
the conductivity is the same as without the magnetic field, apart from the resonance 
factor F. 

If the effective mass and cyclotron frequency are constant over the whole 
Fermi surface, F will take the same value for all electrons. Since in the extreme 
anomalous limit the surface impedance varies as o-’/3, we may write immediately 

z a p )  = O1z,(o) F-l/3, . . . . . .(49) 

where Z,(O) is given by (42). The factor 01 is supplied to make up for the defici- 
encies of the calculation which arise from taking imperfect account of the surface 
scattering. According to Azbel’ and Kaner (1958), in the resonance region a: is 
to a good approximation 8/9, though there are small oscillatory terms which 
slightly modify the amplitude of the oscillations of Z,(H). On account of the 
complex form of Z,(O), which has a factor (1 + J 3 i ) ,  the real and imaginary parts 
of Z,(H) do not exhibit symmetrical oscillations, but are distorted in the way 
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shown in figure 28. The  distortion would hardly be noticeable experimentally 
for values of w,? less than 10, but the maxima and minima in F appear somewhat 
displaced from the expected positions. 

T o  examine the order of magnitude of the quantities involved, so as to find 
the conditions under which the effect should be observable, let us consider the 
standard metal (see Appendix) for which, if we use 1 cm microwaves, the funda- 
mental resonance will occur at the quite accessible field of 11 000 gauss, the other 
resonances being at sub-multiples of this figure. The  perimeter of the funda- 
mental orbit is 4.7 x cm, about lo3 times larger than the skin depth, so that 
this condition for resonance is easily met. On the other hand, to see several 
oscillations of the resistance it would be desirable to have the mean free path 
rather larger than the perimeter of the fundamental orbit, say lo-* cm. With 
this free path the metal would have a d.c. conductivity 2000 times better than 

0 I 2 3 

4 4  
Figure 28. Theoretical variation of R and X with H in free-electron metal, for various values 

of wc T .  (After Azbel’ and Kaner 1958.) 

copper at room temperature. Such a conductivity is obtainable at the lowest 
temperatures with a few metals which can be prepared in a state of high purity, 
but the requirement is rather stringent and at present is something of a limitation 
to the use of this method as an analytical tool. A significant improvement would 
be realized by working at rather higher frequencies, since there is still a factor in 
hand in the ratio of orbit radius to skin depth, which varies as wc-2’3 ; but the 
magnetic fields required become correspondingly greater, and there are technical 
difficulties (probably not insuperable) in the use of microwaves of wavelength less 
than 4 m m ,  especially if resonant cavities are to be used to measure the surface 
impedance. 

If the Fermi surface is not ellipsoidal and the effective mass is different for 
different orbits the interpretation of the theory becomes somewhat delicate. 
Azbel’ and Kaner enter into the matter in great detail, but we shall do no more 
than discuss one or two special points of importance. Let us start with a Fermi 
surface something like that shown in figure 27, having a centre of symmetry. 
The  variation of wc with k, must be an even function ; the point P, where the 
tangent plane is normal to H (an elliptic limiting point in the terminology of Azbel’ 
and Kaner), is not especially distinguished so far as the variation of w, is con- 
cerned, and we may expect around P that dw,/dk, will be finite and non-vanishing. 
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The resonance factor F will then be a smooth even function of k,, and to determine 
the oscillations of the impedance it is clear from (47) and (48) that we have to 
evaluate integrals of the type J F  1 pz I dk, for u,,(v, H )  and JFI pv I dk, for u,,(v, H ) .  
If we confine our attention to the fundamental oscillation of F (i.e. neglect the 
distorted form which appears at large values of we 7 )  the evaluation of these integrals 
may proceed by the use of a phase-amplitude diagram, in which an element of arc 
represents the amplitude (ds) and phase (4)  of FIp,Idk, on an Argand diagram. 
The  value of 4 for any strip dk, is seen from (46) to be -22xw/w,, which may be 
written in the form 

4 : -  a / H ,  ‘1 
. . . ,  

where, from (12), CY = 22xwm,*/e, j 
a: being a smooth even function of k,. So far as u,,(v,H) is concerned, the 
behaviour is dominated by the central region of the Fermi surface, around which 4 
varies no more rapidly than as kZ2,  while the contribution of a strip is sensibly 
proportional to dk,, since p, is stationary at the centre. The  phase-amplitude 
diagram thus starts with 4 proportional to s2, once more the Cornu spiral ; in this 

Figure 29. Cornu spiral showing contributions to cyclotron resonance. 

particular application of the spiral, however, we cannot suppose that the whole 
length is realized, since the total difference in 4 between the centre of the Fermi 
surface and the limiting point may be quite small. If it amounts to as much as 2n, 
the resultant oscillatory behaviour of the whole Fermi surface is easily described. 
Suppose that the phase-amplitude diagram is precisely a portion of the Cornu 
spiral, as the arc OS in figure 29, which represents R, the resultant amplitude of 
a,,(v,H). This resultant may be considered as dissected into two terms, R, the 
limiting vector of the spiral, and RI a correction term. IOW if S lies farther 
than about 277 from 0, R, is very nearly normal to the curve at S, while, of course, 
R, is at n/4 to the curve at 0. As the magnetic field is changed, and with it all 
the $’s, S will move regularly along the spiral, getting farther from 0 as H is 
reduced, since from (50) 4 = -a/H. But the resultant will always have one large 
term R, phase-linked to the spiral at 0 and another R, phase-linked at S. Conse- 
quently the oscillations of the conductivity will have one dominant term whose 
frequency is determined by the value of me* at the centre of the Fermi surface, 
and one lesser term determined by the value of mc* at the limiting point. Actually 
this situation is rather unrealistic, since the Cornu spiral does not represent the 
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(s, 4)  relationship close to the limiting point, but over-estimates the amplitude 
contributed by this region. T h e  real spiral closes up more sharply, perhaps as 
in figure 30 ; the secondary contribution, from the limiting point, is then even 
less important, and apart from small periodic perturbations of phase and ampli- 
tude the observed oscillations will be essentially those of the central section of 
the Fermi surface. I t  is interesting that the superposition of oscillations involving 

Figure 30. Modified version of figure 29. 

only a fairly narrow range of phases yields a resultant in much the same way as 
in the de Haas-van Alphen effect, where by contrast the range is huge, the 
dominant role in both being played by the extrema1 section. 

If the microwave field is polarized parallel to the magnetic field, a similar 
analysis shows that the limiting point contributes the region near the origin of 
the Cornu spiral, and this is likely to be the dominant oscillation. The  central 

E,; dc 

Figure 31. Cyclotron resonance at a limiting point. 

section of the Fermi surface may also contribute its characteristic frequency if the 
magnetic field does not lie along a symmetry axis of the surface. I t  is not difficult 
to  see that the section of the Fermi surface which makes no contribution is that 
at which the electron on the effective zone has no velocity component parallel 
to H ; only if this section is also the central section will there be no oscillations 
from the central extremum. I t  should clearly be possible by measurements 
using different polarizations to determine which oscillations are due to limiting 
points and which to central sections or to other extrema of effective mass which 
are not located at limiting points. The  possibility of singling out a particular 
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point on the Fermi surface is potentially very valuable, and we shall examine 
more closely what information it can reveal and under what conditions the effect 
should be observable. In  figure 31 are drawn the sections of two energy surfaces, 
the Fermi surface eo and a neighbouring surface c O + d c ,  with elliptic limiting 
points P and P’ whose normal separation is de/Evo. The tangent plane at P 
intersects the upper surface in an ellipse whose semi-axes are (2p,, dc/EivO)’/2, 

where p1,2 are the principal radii of the surface at P’. Hence the area of the 
ellipse is 24pl p2)l’a dc/hvo or 2.rrde/K1’2Evo, where K is the Gaussian curvature 
at the limiting point. It follows from (12) that the cyclotron frequency is 
eHvoK1’2/&. If then by other means, such as anomalous skin effect studies in 
zero field, the shape of the Fermi surface has been found, K may be calculated ; 
in this way the cyclotron resonance frequency can yield a value for the Fermi 
velocity at a particular point on the surface at which the normal is parallel to the 
applied field. The  appearance of Kllz in the result emphasizes the fact that only 
elliptical limiting points reveal themselves, that is points at which both principal 
curvatures have the same sign. A wholly convex surface should show the effect 
at all orientations, so that in principle a complete analysis of the variation of 
Fermi velocity appears possible. Other cases require more care in interpretation, 
and we refer the interested reader to Azbel’ and Kaner’s thorough investigation 
of these points, with the mild warning that some of their suggestions for the 
application of cyclotron resonance, while theoretically sound enough, seem to an 
experimenter to be rather over-optimistic in the demands they make for purity, 
precision and perseverance. 

As regards the conditions for observing resonance due to the limiting points, 
two comments may be made. The  first is that one does not of course expect to 
observe the resonance of the electron actually at the limiting point, since it is 
essential to the effect that only a small fraction of the orbit shall lie in the skin 
depth. But if the cyclotron frequency is not an extremely rapid function of k, 
there should be sections close to the limiting point having to all intents the same 
frequency and at the same time giving rise to sizeable orbits, at any rate for the 
larger Fermi surfaces which are of principal interest. The  very size of the orbits, 
however, leads to the second observation, that between two traverses of the skin 
layer the electron travels quite a distance (taking 1.4 x 108 cm sec-I as a typical 
velocity and 3 x second as a typical microwave period we see that this distance 
is 4.2 x low3 cm at the fundamental resonance). W-hen a limiting point is being 
studied the electrons have a component of velocity parallel to H which is very 
nearly the Fermi velocity ; thus the paths of the electrons are open helices having 
the direction of H as axis and a pitch of about 4 x If H is not precisely 
parallel to the surface of the metal the depths at which successive traverses take 
place will not be the same, and this will prevent the observation of cyclotron 
resonance. Since typically the pitch of the helix is 500 times the skin depth, 
alignment to a few minutes of arc or even better is desirable if the limiting point 
resonance is to be observed. It should be remembered that the surface impedance 
is complex, which implies that the phase of the oscillation varies with depth. 
Even if successive traverses lie well within the skin depth there may still be a 
displacement of the resonance by this phase shift. The limiting points occur in 
pairs at opposite ends of the Fermi surface, and have opposite displacements ; 

cm. 
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lack of exact parallelism may therefore show itself by the appearance of two 
resonances of equal amplitude beating with one another, or, when this effect is 
averaged over all contributing orbits, a diminution in the amplitude of the oscilla- 
tions. The  extreme sensitivity of the limiting point resonance to alignment makes 
it doubtful if it has ever been observed. I t  is more likely that the recorded 
resonances are due either to ellipsoidal Fermi surfaces of constant mass, which 
resonate all of a piece, such as those in bismuth which Aubrey and Chambers 
(1957) have studied in some detail (figure 32), or to sections of extrema1 mass in 

- - 1  I 

Figure 32. Cyclotron resonance in bismuth at 9400 Mc/s ; 
, A R / W ) ,  --_ , 0 AX/R(O). 

T h e  theoretical curves are calculated for m,* = 0.11 electron masses and UT = 3. (After 
Aubrey and Chambers 1957.) 

large surfaces, as we venture to interpret the observations on tin (figure 33). This 
does not mean that the limiting points are of no value, but only that a far more 
careful investigation is needed before their worth can be assessed. The degree 
of parallelism required is certainly formidable, especially as strain-free electro- 
polished surfaces are not normally very flat. Central sections, on the other hand, 
do not demand such a high degree of parallelism, since the mean velocity parallel 
to H is zero. The  variation of the resonance with field orientation should prove 
of value in diagnosing the origin of the resonance. It is, however, rather 
unprofitable to speculate in detail along these lines until more systematic experi- 
mental evidence is available. 

The foregoing discussion has been based on the assumption that the whole 
problem may be treated in terms of the Fourier components of the field and the 
response of the electrons to them, without explicit reference to the boundary 
conditions. This proved to be possible in zero magnetic field since in the two 
cases chosen, specular reflection and diffuse scattering at the surface, the electrons 
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leaving the surface could be treated as if they had come from the exterior of the 
metal, having passed through a suitable ' image field ' ; in the former case the 
image field was defined by the equation E(  -2) = E(z ) ,  in the latter E(  - z )  = 0. 
But when there is a magnetic field present this particular device becomes unwork- 
able. The  trajectory of an electron reflected specularly is as shown in figure 34 ; 

Figure 33.  
IS measured in this experiment. 

Cqclotron resonance in tin at 24 000 MC s. Note that it is dR dH, not R, nhich 
(After Kip, Langenberg, Rosenblum and TVagoner 1957.) 

if an image field E( -2) = E ( z )  is supplied to  simulate the effect of multiple 
passages through the actual field, we must at the same time reverse the steady 
magnetic field, making H( - z )  = - H(x). This means that some of the important 
electrons, i.e. those in the skin layer which collide with the surface, cannot be 
treated as responding to the electric field in the presence of a uniform magnetic 
field, and the Fourier method in its simple form breaks down. Similarly, if we 

/ \ 

Figure 34. Electron trajectory for specular surface reflection, showing equivalent trajectory 
in an infinite sample. 

replace diffuse boundary scattering by the assumption that E(  -x) = 0 in an 
infinite medium, unless at the same time we make H( -2) vanish, we allow the 
possibility of multiple traverses between successive collisions of the skin layer by 
electrons which in fact collide with the surface. It appears, then, that the simple 
extension of the anomalous skin effect theory which we have adopted is not justified, 
but fortunately in the resonance region the only errors incurred are of the numerical 
constants, not the qualitative features, and are in any case quite small. There is, 
however, a phenomenon which needs the full treatment to find a satisfactory 
explanation, and this is a drop in surface resistance in quite small fields, as illus- 
trated by figure 35. I n  this curve the hump is believed to be a rather ill-marked 
resonance, but the initial fall (which should surely start as H 2  in small enough 
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fields) is not associated with the resonance. The  same effect has been seen in 
tin at a frequency as low as 3000 Mc/s (Pippard, unpublished), certainly too low 
for a resonance to be observed in the particular sample used. According to  
Azbel' and Kaner, whose theory takes explicit account of the surface scattering 
difficulty, the characteristic field strengths for this effect are those which bend 
the electron trajectories sufficiently to prevent any free path being completed 
wholly within the skin layer. Referring back to figure 27, we see that a typical 
electron moving parallel to the surface is represented by 2, and if the radius of 
curvature in the plane of the section is p z ,  the radius of curvature of the orbit in 
real space will be Z p J e H ,  If a free path of length I having this curvature can just 
be contained in a layer of thickness a,, we must have H equal to 86,Rp,/e12. 

Figure 35, C>-clotron resonance in tin (Fawcett 1956) at 24 000 Mc,'s. The upper curve shows 
(After the oscillations which might have been expected for the particular value of W T .  

Chambers 1956 b.) 

Typically at microwave frequencies, this might be about 3 x 10-5/Z2 gauss, so that 
for rather pure copper at the lowest temperatures, where I -  cm, a field of 
30 gauss is enough to affect the resistance appreciably. For the purest tin avail- 
able the value of I is nearly 10-1 cm, and a field of only 3 milligauss should be 
sufficient. But this corresponds to an orbit radius of about 250 cm, very much 
more than local radii of curvature on normal electropolished surfaces ; we may 
perhaps doubt whether the theory is valid under these circumstances. If, how- 
ever, the theory may be safely applied when the orbit radius is reasonably small, 
there seems to  be a possibility of making a direct measurement of the mean free 
path on the effective zone by a systematic application of this effect. Considerable 
evaluation of the Azbe1'-Kaner theory is needed in order to discover the predicted 
variation of R with H (they give only the initial quadratic variation for a metal 
with a single ellipsoidal Fermi surface), for it is certain that a careful quantitative 
comparison between theory and experiment is needed before any results obtained 
can be regarded as reliable. It would also be of interest to attempt a solution of 
the theoretical problem with different boundary conditions (e.g. specular reflec- 
tion), for it is likely that the behaviour is sensitive to the nature of the surface 
scattering, and it might be possible to use the effect to demonstrate, even more 
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clearly than does Chambers’ (1952 b) careful work, that the surface scattering is 
in effect completely diffuse. 

We must now turn briefly to another phenomenon, also called cyclotron 
resonance (Galt et al. 1955, 1956, 1959), which under rather special conditions 
can yield information on the effective masses. In  this the experimental arrange- 
ment is such that the magnetic field is applied normally to the surface of the 
metal. Let us see what effect such a field can have on the surface impedance of a 
free-electron metal. It is convenient, both in order to understand the effect and 
to get the most from it experimentally, to have the microwave field circularly 
polarized, so that the phase angle of any field component represents the actual 
orientation of the field, and all field variables rotate about the z-axis. The  
retardation effects which occur when the free path is so long that WT is comparable 
with, or greater than, unity can now be understood in the following way : electrons 
moving in the plane normal to z continually pick up momentum from the field 
and hence contribute to the current, but as E rotates the current already created 
does not and so a phase lag results. In  fact, if the x-variation of E is sufficiently 
slow to be neglected, the effective conductivity is not 0 but U/( 1 + i w ~ ) ,  the complex 
nature of the expression reflecting the phase lag between current and field. In  
the presence of a magnetic field the whole electronic distribution, and hence 
the current, is caused to rotate with angular velocity w,, and if w and w, have 
the same sense the phase lag is reduced, the effective conductivity becoming 
~ / [ l  - t i ( W - W , ) T ] .  In  particular, if the magnetic field is adjusted to the resonant 
condition, w = w,, the electronic distribution and the electric field rotate in phase 
and all retardation effects are eliminated. It might be thought that if W T  is much 
greater than unity the increase of effective conductivity at resonance would show 
up as something like a resonant peak in the surface impedance, but this is not so. 
T o  continue with the present example, if the x-variation of E is s!ow we may use 
the normal expression (38) for the surface impedance, and write 

Z ( H )  = R+iX = __ [l + i ( w - w c )  .]y2 . r: . . . . . ,  

The real and imaginary parts of 2 are monotonic functions of w,, as shown in 
figure 36 ; only 121 shows anything like resonant behaviour, and this unfortunately 
is not easily measured directly. The  resistance, which is easiest to measure, 
shows an inflection at the point of resonance. One would hesitate to lean heavily 
on the determination of a point of inflection for deriving an important parameter, 
since such a point may readily be shifted by quite minor secondary effects. If 
there is more than one Fermi surface, and the normal skin effect theory is still 
applicable, the behaviour of R ( H )  may be more complicated and peaks may even 
appear, as shown by the experimental results for bismuth (figure 37). The  posi- 
tions of the various features of such curves as this may be interpreted in terms of 
Shoenberg’s (1957) ellipsoidal model of the bismuth Fermi surface, but we may 
be permitted to doubt if this interpretation would have been arrived at without 
the aid of Shoenberg’s very specific model. It is, indeed, a serious criticism of 
this experiment as an analytical tool that the recognizable features of the curves 
appear at positions which are determined by an implicit relation between all the 
different contributing electrons, and that this relation is bad enough for ellipsoidal 
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Fermi surfaces which represent the most complicated case yet analysed theoretically. 
It is nevertheless possible, as recent measurements on zinc (Galt, Merritt, Yager 
and Dail 1959) have shown, to use this experimental arrangement in conjunction 
with Azbe1’-Kaner resonance with advantage. The  latter determines the effective 
mass, and hence the field strength at which resonance should occur in a normal 
field. If circular polarization is now used, it proves to be possible to see some- 
times whether the resonance occurs with positive or negative field, and hence to 
ascribe the resonance to electron or hole orbits. This is something which is not 
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Figure 36. Variation of R, X and 1 Z 1 from equation (51). 

-IOW 0 IOW0 
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Figure 37. Field variation of absorption due to bismuth in a circularly polarized resonant 
cavity at 24 000 lKc/s. (After Galt, Yager, Merritt, Cetlin and Brailsford 1959.) 

revealed directly by any other method, except possibly the Kjeldaas ultrasonic 
experiment which we discuss later (p. 252), and it would establish normal field 
resonance as a tool of great utility if there were the possibility of general application. 

The  method is, however, subject to the serious criticism that the phenomenon 
may usually be unobservable (Chambers 1 9 5 6 ~ ) .  We have seen how at the 
resonant condition retardation effects are neutralized ; the magnitude of the 
observed effect is thus dependent on the extent to which the impedance in zero 
field is modified by retardation effects. But when the anomalous skin effect is 
well-developed, retardation effects are of little importance (see p. 221) in most 
metals at frequencies less than 1OI2 sec-I. At microwave frequencies, as the field 
is changed all that happens is that the position of the effective zone shifts slightly 
so as to bring into prominence those electrons which have the appropriate 
%-component of velocity to move in phase with the rotating field. We expect to 
see very little, then, with most metals except at very high, long infra-red fre- 
quencies (and in correspondingly high fields of several hundred kilogauss). The 
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most likely exceptions to this negative conclusion are semi-metals such as bismuth 
and graphite which even at microwave frequencies show pronounced retardation 
effects, metals such as zinc in which there are small as well as large sheets to the 
Fermi surface, the former playing a significant role in conduction, and metals 
with highly distorted Fermi surfaces for which the complicated orbits in a mag- 
netic field may lead to excessive boundary scattering of the most effective electrons 
and hence to a modification of the surface impedance. But the theory of the last, 
which is likely to be rather difficult, has not been worked out. We are therefore 
inclined to see very little prospect of this method making a significant contribu- 
tion to the analysis of any but semi-metals and relatively minor portions of metals, 
and for these the de Haas-van Alphen and related effects seem vastly more 
powerful, except for distinguishing electrons from holes. 

Finally, it should be mentioned that oscillatory skin effects analogous to the 
Schubnikov effect ought to be observed in the microwave impedance, under 
conditions suitable for observing oscillations of the d.c. resistance. According to 
Azbel’ (1958) the amplitude of the oscillations should be of the order of ~ , , l k T  
greater than the d.c. oscillations. His comparison is made, however, with the 
theory of Lifshitz (1958), which, as we have already seen (p. 214), predicts oscilla- 
tions smaller by the same factor than the predictions based on the views of 
Davydov and Pomeranchuk (1940). It seems therefore that if the latter is correct 
there is little point in looking for the skin effect oscillations when a d.c. measure- 
ment should do as well. iVe shall therefore not discuss this suggested experi- 
ment further. 

4.5. Ultrasonic Attenuation and Magneto-acoustic EfJects 
The experiments of Bommel (1954, 1955) and later workers (see 3Iason 1958) 

have revealed that in pure metals at low temperatures a new mechanism of ultra- 
sonic attenuation appears, as a result of a direct interaction between the conduc- 
tion electrons and the ultrasonic vibrations of the lattice, and that in propitious 
circumstances the attenuation may be an oscillatory function of the strength of 
an applied magnetic field. The  analysis of these effects leads us to what are 
potentially the most complicated of all the phenomena to be considered in this 
review. The  general case of the interactions between the lattice vibrations of an 
anisotropic solid and the electrons lying on an arbitrary Fermi surface, in the 
presence of a magnetic field, conjures up a vision of almost unlimited complexity. 
The  principal effects can, however, be made clear with the aid of the free-electron 
model of an elastically isotropic solid, which is the only model so far treated in 
print. What little has been published on the theory is at times somewhat mis- 
leading (Pippard 1955, 1957 b, Steinberg 1958 a, b, c, Rodriguez 1958 b, Kjeldaas 
1959, Kjeldaas and Holstein 1959, see also Mason 1958 for other references), 
while as for the experimental results, they are so suggestive, and yet so tantalizingly 
scrappy, as to do little more than point to the need for systematic study, with the 
virtual certainty that something of interest will emerge. I t  is therefore worth 
while devoting some space to a detailed discussion of the free-electron model. 
But before doing this we shall take the opportunity of suggesting a standard 
notation which will serve to describe any particular experimental arrangement. 
So long as the metal is isotropic, the disposition of the experiment is defined by 
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the polarization of the wave and the direction of the applied magnetic field ; if we 
take a Cartesian system of axes, with unit vectors i ,  j ,  k, the experiment is defined 
by two vectors ( X , Y )  by which it is to be understood that the wave vector q is 
directed parallel to i ,  the particle velocity U in the wave parallel to X, and the 
magnetic field H parallel to Y. Thus  (j, k) represents a transverse wave in a 
transverse magnetic field which is normal both to the propagation direction and 
to the particle velocity ; we shall be concerned primarily with six special cases of 
interest ( i ,  0), (j ,  0), ( i ,  j), ( j ,  j), ( j ,  k) and (j, i). To deal with real anisotropic 
metals (and of course even cubic metals may be highly anisotropic elastically as 
well as in the shape of their Fermi surfaces), the above notation is insufficient. 
We propose that for such a situation three vectors should be used, referred to 
specified axes fixed mith respect to the crystallographic axis ; the first vector 
defining the direction of q, the second that of U, and the third that of H. We 
hare at present no occasion to use this more elaborate notation. 

T o  understand how the interaction between acoustic vibrations and the conduc- 
tion electrons leads to attenuation, let us first suppose that the electrons suffer no 
collisions with the lattice. We might then picture the wave as affecting only the 
positive lattice, leaving the electrons at rest with a uniform density. If the wave 
is longitudinal the density of positive charge will vary periodically, so that in the 
absence of a compensating variation of negative charge there will be set up powerful 
longitudinal electric fields, which will force the electrons into motion. I n  fact, 
of course, only the minutest degree of charge imbalance is needed to keep the 
electronic current at the same magnitude as the lattice current (provided that the 
ultrasonic frequency is much less than the plasma frequency wp = c(477Ne2/m)"2 ; 
since wp- 10l6 sec-l in most metals this condition is easily met). We conclude 
that a longitudinal electric field is associated with a longitudinal wave, having a 
magnitude sufficient to keep charge neutrality. If there are collisions between 
electrons and lattice they also may help to establish the required electronic current, 
but whatever the mechanism we may divide the current into contributions from 
the lattice and the electrons, and write 

J la t t  + Je, = 0. . . . . . .(52) 

If the wave is transverse there is no tendency for space charges to be established, 
but now the movement of lattice without electrons causes a transverse current 
and hence a magnetic field associated with the wave. By induction an electric 
field is produced and it is this which pulls the electrons into motion with the 
lattice. The  need for ' current neutrality ' is not nearly so strong as for charge 
neutrality, the condition being that the frequency shall be much less than that at 
which the skin depth for alternating fields becomes equal to the wavelength. 
At lower frequencies than this the skin depth is smaller than the wavelength and 
each part of the wave is, as it were, screened from the other parts and transmits 
no magnetic effects ; this can only be achieved if there is no net current. For 
most metals the critical frequency is around lo3 Mc/s, so that the ultrasonic 
frequencies in use at present, up to about 100 Mc/s, are reasonably well within 
the condition for current neutrality. We shall assume then that (52) holds also 
for transverse waves, but it should be remembered that a more thorough treatment 
may be required in special cases (such as bismuth, where the wave velocity is low 
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and the skin depth high). It is worth remarking that if the frequency is well 
above the critical value, as with the thermally excited phonons at all but the very 
lowest temperatures ( < O a l " ~ ) ,  the electrons are not drawn into motion with the 
lattice, and lose their power of attenuating transverse waves, 

The  electric field which effects current neutrality is the link between lattice 
and electrons which is responsible for transferring energy from the former to the 
latter and so attenuating the wave. If the peak value of the electric field is E, 
the mean rate of increase of energy of the electron assembly, per unit volume, is 
given by 

and because of (52) this is the mean rate of decrease of energy of the lattice. Thus 
(53) represents the rate at which mechanical energy is converted into excitation 
energy of the electron assembly. Inelastic collisions transfer this energy back 
to  the lattice as heat, but this part of the process does not concern us-the rate 
at which it occurs does not affect the attenuation. We must not ignore the possi- 
bility that collisions between the lattice and the electrons? may also dissipate the 
mechanical energy of the wave, though in fact it is easily seen that this is not so 
provided (52) holds. The  reason is that at any point the electronic current, as 
seen from a frame of reference moving with the lattice, vanishes and with it the 
total momentum of the electron assembly. The  statistical effect of collisions 
between electrons and scattering centres moving with the lattice is to bring the 
electron assembly into equilibrium with the moving lattice. Since the equilibrium 
state is one of zero momentum, there is no net momentum transfer in the collision 
processes, and hence no force of reaction between the electrons and the lattice, 
other than that due to the electric field. In  calculating the attenuation then, we 
need only consider the influence of the electric field, as expressed in (53). 

If the peak value of the particle velocity in the wave is U, the lattice current 
density J,, is -Neu ,  where N is the number of free electrons per unit volume, 
and the energy per unit volume in the wave, W, is $Mu2, where M is the density 
(we shall not concern ourselves with the minute difference between the lattice 
density and the density of the metal). 

TI' = $a( E * .  le,), . . . . * .(53) 

Thus 

. . I  

IP N e  
W- Mu2 
- = -%(E*, U), .(54) 

from which it is seen that the characteristic time for loss of mechanical energy is 
the reciprocal of the right-hand side of (54), and the extinction distance is this 
multiplied by the wave velocity v s  ; alternatively, if the wave takes the form 

U E U e-laoei(ot-qr) 

the attenuation constant a is the reciprocal of the extinction distance, or 
. . . . . .(55) 

L%'(E*. U). . . .  Ne 
Mu2 v, 

a = -  ' ( 5 4 )  

The  problem of calculating 01 is thus reduced to that of calculating the electric 
field needed to maintain current neutrality. More precisely, if we take U as real, we 
are interested in the real part of p, defined as E , , / u ,  where E, ,  is the component of E 
in the direction of U. 

t In all that follows we are thinking particularly of collisions between electrons and impurities, 
though similar behaviour is to be expected from electron-phonon collisions. 
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At this point the collisions between electrons and lattice come into prominence, 
for although they do not directly contribute to the attenuation, they do play an 
important role in the establishment of the electron current. We must imagine that 
there is a periodic electric field E (all field variables are to be understood as 
multiplied by ei(ot-qz), so that ajat = iw, a/& = -iq ; the attenuation is taken as 
very small so that edaB may be put equal to unity in the calculation of E) 
associated with the lattice velocity U ,  and that the electrons move through this field, 
acquiring momentum from it and from collisions with the moving lattice. If we 
confine our attention to the case of isotropic elastic scattering, we may suppose that 
the effect of a collision is to return the electron to some point on the Fermi surface, 
taking into account the fact that the Fermi surface is centred on the origin with 
respect to an observer moving with the lattice. This enables us to separate the 
problem into two parts. First we imagine the lattice at rest, and calculate the 
current density due to E and to collisions with the stationary lattice ; then we put 
E = 0 and calculate the current density due to  collisions with the moving lattice. 
T o  take the second contribution first, it is convenient to replace the effect of 
collisions with the moving lattice by a fictitious electric field E,, by the following 
argument. T o  calculate the average displacement in reciprocal space suffered by 
an electron on the Fermi surface we must take a weighted average over its past 
history. Let us suppose that at an instant t earlier it is moving through a region 
where the lattice velocity is u ( t )  ; the chance of a collision in the interval dt leading 
to a change in its velocity by an amount U is dt/r ,  and the chance that it will survive 
for a time t without further collision is Thus the average additional velocity 
of electrons of this trajectory when t = 0 is 

(1 / r ) Jmu(  0 t )  dt .  

If instead of lattice movement we had an electric field E, equal to muier  the result 
would be just the same. Both contributions to the current may therefore be 
calculated at the same time by imagining the lattice to be stationary and the field 
to be E + mule.. 

So far what we have said applies both to transverse and to longitudinal waves. 
I t  is now convenient to treat them separately, and we take transverse waves first, as 
being simpler. If the lattice movement is parallel to the unit vector j ,  the electronic 
current to be established is Neu,. When there is no magnetic field present, the 
field needed to establish the current is also parallel to j ,  but in a magnetic field there 
may be other components. Since, however, the attenuation is determined by the 
component E,, we need only concern ourselves with the element p,, (q ,  w )  of the 
resistivity tensor appropriate to a periodic field, writing 

Nepjj  uj  = Ej  -i- E, = E j  -i- muj/er, . . * .  . . (57)  

so that m 
er 

Ej = - (yt - 1) ~ j ,  

in which yt = op,, and a is the d.c. conductivity Ne2r /m.  Hence from (56) 
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in which cSt is the velocity of transverse waves. In  the absence of a magnetic field 
pjj is simply the reciprocal of the corresponding conductivity ajj, which may be 
calculated in the same way as was used in deriving (16). Strictly one should make 
allowances for the fact that the transverse field is moving with velocity vst, but as 
for most metals this is much smaller than the Fermi velocity e,, the error involved 
in supposing the field to be stationary (i.e. w = 0) is negligible. The  calculation 
then vields the result 

where (59) 

which may be inserted into (58) to give atranS. We shall return later to discuss this 
result in more detail. 

For longitudinal waves it is not permissible to neglect effects arising from the 
movement of the electric field associated with deformation, because this field is so 
large (yet so phased as not to contribute to the attenuation) that effects of relative 
magnitude vJv, are still large enough (if correctly phased) to make major con- 
tributions to the attenuation. T o  substantiate this statement in more detail let us 
start by considering the equilibrium of a metal subjected to  a static longitudinal 
deformation [ e--iqa, which results in a periodic dilation - iq[ e-iqz, In  con- 
sequence the equilibrium density of electrons and the kinetic energy at the Fermi 
surface vary according to the laws 

since for a free electron gas E,ccN*~s. In  equilibrium the total Fermi energy is 
constant, so that there must be developed such space charges as will maintain a 
periodic potential 4 so that E ,  + e+ is independent of z ; 

i.e. e+ = - $iq[Eo e--iq~ = - 1 3iq[mvo2 e-iqa. 

The  longitudinal electric field E,, derived from 4, is given by the expression 

eE, = iqe4 = $q2[mv,2e-iQB. 

An electron at the Fermi surface, moving in this statically deformed lattice, remains 
always on the Fermi surface, which itself varies in size from point to point ; there 
is thus no current associated with E,. But as soon as we allow the whole pattern 
of dilation and electric field to move uniformly with velocity us, a current is set up. 
T o  calculate this current, consider an electron, initially on the Fermi surface, 
moving with velocity vo at an angle 8 to the z-axis. I n  traversing a distance dl it 
gains kinetic energy eE, dlcos 8 from the field ; meanwhile the field pattern has 
moved forwards a distance u s d l / z ~ ,  and the electron finds itself at a point where its 
potential energy has not changed by - iqe4dlcos 8, i.e. -eE,dlcos 8, but by 
- eE, dZ(cos 8 - vs/v0). It has therefore departed from the local Fermi surface to 
the extent given by the increment of energy eE,v,dZ~v,. The  same effect would 
be produced if the field pattern were stationary and each electron were subjected to  
a fictitious force F,  of magnitude eE, c,/z~,, directed parallel to its motion. We may 
calculate the resulting current density Ji' produced by this fictitious force in the 

. . . . . .(60) 
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usual way, integrating over the trajectories of all electrons at the Fermi surface. 
there is no magnetic field present we easily obtain the result 

If 

It will be noted that this integral is purely imaginary, so that the current Ji' is in 
phase quadrature with E,. It is easy enough to evaluate the integral, but a tidier 
result is obtained by introducing yet another fictitious field E,', which is that 
electric field which would produce the same current J,' as is produced by F (it should 
be noted that Fac ts  parallel to each electron trajectory and is not therefore derivable 
from a potential like Ei'). On carrying out a calculation of the current which 
would be produced by a stationary field E,', we derive an equation which determines 
E".' : 

x2dx - $gEi' - s -l 1 -iax' 
Ji' = ~ o E , ( v , / v , ) ~  - xdx  - 

-1 1 - iax 

from which, since only the real part of the right-hand integral exists and has the 
same form as the imaginary part of the left-hand integral, we find 

E,' = ia(vs/vo) E, = iurE,. 

It is interesting that the same simple result is obtained when there is a magnetic 
field present, as is shown by Rodriguez' (1958 b) analysis, but we are unable to 
provide an intuitive physical reason for this. At any rate it enables us to cast the 
theory into the same form whether or not a magnetic field is applied. Since the 
lattice velocity U, is related to displacement 5 by the equation ui = iwc, (60) may be 
used to write the amplitudes of the real and fictitious fields in the form 

E, = - iiqu, mvO2/ev,, 

. . . . . .(61) 

lmu ,  2: E.' = -- a .  
a 3 er 

The true field E,, being in phase quadrature with ui, contributes nothing to the 
attenuation and may henceforth be neglected. But Ei' is in phase with ui, and may 
be very large when the electronic free path is large, since it is 4a2 times as great as 
the fictitious 'collision field' E,. 

We may now repeat for longitudinal waves the treatment of transverse waves 
already given, writing instead of (57) 

mu 
er 

Nep,, U, = Ei + E, + E,' = Ed + -2 (1 + Qa2), . . . . .(62) 

where Ei is the electric field which supplements E, and supplies as much of the 
required current as is not supplied by E, and Ei'. Since E,' is introduced when the 
moving field configuration is replaced by an equivalent stationary field, pi, is to be 
interpreted as the longitudinal resistivity for a stationary field of wave number q. 
From (56) and (62) we find 
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in which csl is the velocity of longitudinal waves and y1 = upii.? In  the absence of 
an applied magnetic field, pii is the reciprocal of uii, which is readily calculated to 
yield the result 

y1 = 3(a-tan-la)* 

It will be observed that as a-co, y1-++a2. Thus the presence of the term $a2 in 
( 6 3 )  serves to reduce enormously the attenuation which would be observed in its 
absence, when the free path is very long. We saw (p. 198)  that as 1-x the 
conductivity associated with a periodic longitudinal field tends to zero, in contrast 
to that for a transverse field, and we might therefore have expected longitudinal 
ultrasonic waves to be highly attenuated in the range q l 9  1. But in fact under these 
conditions the current needed for charge neutrality is almost all supplied auto- 
matically by the retardation effect which is reflected in the fictitious field Ei’, and 
the attenuation remains finite. 

In  order to appreciate in more detail the behaviour of oltrans and qn,lg in zero 
magnetic field it is convenient to see the limiting forms at low and high frequencies 
(q l< 1 and q19  1 respectively), as deduced from (58) and (59) and from ( 6 3 )  and ( 6 4 ) :  

a3 . . . . .  . ( 6 4 )  

Nmz?,q*l 
5Must ; q l < l  . . . . . .  “trans = 

4IVmv, q .  
3nMvs, , q l 9 1  . . . . . .  

It will be seen that atrans and along are very similar in behaviour, varying as q2 1 when ql 
is small, and as q when ql is large. Since for both oll is a function of ql it is convenient 
to  display the full range of behaviour in terms of these parameters, as in figure 38. 
So far as latrans is concerned it has been assumed that I is so long that the region in 
which ql$ 1 is reached well before the frequency has become too high for current 
neutrality to be maintained. It is clear from ( 6 6 )  and ( 6 8 )  that when q l 9 1 ,  CY is 
independent of 1. This is verified experimentally, as can be seen from figure 39, 
with remarkable precision, which is rather surprising in view of the inadequacy of 
the free-electron model to describe a complex metal like indium. 

The  way in which a becomes independent of 1 recalls the anomalous skin effect, 
and indeed the explanation is the same in the two cases, with this difference, that 
with the ultrasonic wave one is in effect exploring the response of the electrons to 
one Fourier component of the electric field, rather than to a rather wide spectrum 
of components (as in the anomalous skin effect), all of which behave similarly as 
regards independence of 1. When ql is very great the current carrying ability is 

t The  foregoing analysis, in terms of fictitious fields, is a not wholly successful attempt to cast 
the theory in a form which enables the physical content to be appreciated. More conventional analyses 
may be found in the references cited at the beginning of this section. In view of the assertion by 
several authors that the expressions for atrrtns and along, which are the same as those derived by Pippard 
(1955), are in error through an inconsistency in the definition of T ,  it is worth affirming categorically 
that this is not so ; the relaxation time which enters here is defined in the same way as that used in 
conductivity theory. 
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dominated by a small group of effective electrons moving nearly normal to q, whose 
velocity component parallel to q is just the velocity of sound, for these electrons 
move in a constant field and interact strongly with the acoustic wave. It is 
interesting to observe that one can reach the same conclusion by starting with the 

Figure 38. Theoretical attenuation curves for ultrasonic waves, shown as variation of a1 with ql. 
The  upper curve is for longitudinal, the lower for transverse, waves. 
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waves : 

idea of the acoustic wa\’e as a directed stream of phonons. The  process of attenua- 
tion is then brought about by an electron-phonon collision which destroys the 
phonon, whose energy and momentum are taken by the electron. It is easy to 
show that if the electron wave number k is much greater than the phonon wave 
number q, so that the electron is scattered through only a small angle, the only 
electrons which can take part in the interactions are those which move so as to 
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keep in phase with the wave. There is, in fact, a very close connection between 
the semi-classical treatment of ultrasonic absorption given here and the quantal (or 
semi-quantal) treatment of electron-phonon scattering which is normally applied 
to conduction problems in metals. In  the low frequency limit (q<K for an electron 
on the Fermi surface) they give the same answer, provided qZ9 1.7 This suggests 
that a detailed survey of the attenuation of ultrasonic waves as a function of crystal 
orientation might be able to supply empirical values for the matrix elements of the 
electron-phonon interaction, so that a comparison might be made between the high- 
temperature phonon-dominated resistivity and calculations based on realistic 
interaction parameters. At the moment, however, no analysis has been made of the 
way in which the information should be used; moreover there has been no attempt 
yet to make a detailed survey of the behaviour of any single metal as a function of 
crystal orientation. The  usefulness of this type of study really depends on how 
much can be inferred about large-angle scattering (q N K )  and Umklapp processes 
(scattering between two points on the periodically extended Fermi surface, of which 
only one lies in the first Brillouin zone) from experimental information on small- 
angle scattering. 

The  attenuation under conditions such that qZ< 1, as given by (65) and (67), may 
be derived by a different argument (Morse 1955), which is of value in discussing 
what can be expected in real metals to which the free-electron model is inapplicable. 
When qZ<l the whole problem may be treated in terms of the local values of the 
field variables and their first spatial derivatives, and this is equivalent to the 
calculation of a (complex) elastic modulus. If the appropriate compliance 
coefficient (reciprocal of elastic modulus) is x so that the wave velocity may be 
written as (~M)-’’Q, a complex x implies a complex v8 and hence attenuation, the 
attenuation constant as earlier defined being related to the imaginary part of v,-1 

by the expression 

so that if x is written as X I  - ix”, and x” < x’, 
01 = -2wJyvs-1), 

. . . . .(69) 
The  complex nature of x can be thought of as originating in a typical relaxation 
process. When a small sample of the metal is suddenly sheared, as in figure 40, 
by the application of stresses in the directions indicated, the Fermi surface, originally 
spherical, is distorted to an ellipsoidal shape; if the sides of the square are 
multiplied by 1 f 6, the axes of the ellipse are proportional to 17  6.  The changes 
of k suffered by the electrons may be thought of as arising when the electrons are 
reflected from the moving boundaries. The  ellipsoidal shape is of course not 
the equilibrium form of the Fermi surface, and electron-lattice collisions lead to a 
re-establishment of the spherical form with characteristic relaxation time T .  Now 
to produce the deformation the stresses P have in the main to overcome the rigidity 
of the lattice, but there is a small additional dynamical term due to the pressure 
created by electronic collisions with the boundary. In  equilibrium this takes the 
well-known value +Nm3,  which for a degenerate Fermi gas of free electrons is 

t If ql is not much greater than 1 a quantal theory is lacking. I t  may be expected from the semi- 
classical theory that free path effects will be important in electron-phonon interactions if q l - 1  : 
this matter has been discussed briefly (Pippard 1957 c), and there is some experimental evidence 
supporting the conclusions. A more rigorous quantal treatment is most desirable. 
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&Nmv,Z; but when the Fermi surface is deformed into an ellipsoid the velocity 
components must be appropriately scaled, so that the pressures on different 
surfaces are unequal. In  figure 40 the pressure on the boundaries normal to x and 
y are . QNmvO2( 1 - 26) and +NmvO2( 1 + 26) respectively. The  external stresses 
required to produce the initial deformation are thus rather larger than are required 
to maintain it once relaxation has occurred, the difference being tNmvo2 6. Since 

P 

t 

P 
Figure 40. Effect of sudden shear on electron distribution. 

the angle of shear in the present case is 26, the shear compliance is 26/P. If then 
we write xo for the long-term compliance and xm for the short-term compliance, we 
have that 

P = 26/x, and P - QNmvO2 6 = 26/xo, 

4x  = xo-xm = @VmvO2 xo2. so that 

We now make use of a standard result of relaxation theory 

. . . . . .(70) 

so that 

and 

Since we are limited to the case when q l < l ,  it follows that WT,  which equals 
zI,qZ/vo, is extremely small, so that we may write ~ ’ ( w )  = xo and ~ ” ( w )  = WAX. 
Hence from (69) and (70), for a transverse wave 

exactly as in (65). We may also reproduce the result for longitudinal waves by 
recalling that the appropriate elastic modulus is K+@, where K is the bulk 
modulus and n the shear modulus. For a free-electron gas there is no imaginary 
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part of K,  since uniform compression does not destroy equilibrium. The  attenua- 
tion is thus all attributable to the shear modulus, and qona is obtained from atrans 
by multiplying by Q and replacing ust by z)~~, as in (67). 

By interpreting the attenuation in terms of relaxation processes contributing 
to the elastic compliance we may investigate qualitatively the types of contribution 
which may be expected in real metals, where the free electron model is inapplicable, 
and for which the fuller treatment, valid for arbitrary ql, is complicated and full 
of pitfalls. As a first example we consider a model in which there is one spherical 
Fermi surface, but the effective mass is not the same as the real electron mass, 
i.e. ro is written as Kk,,””. Because the difference between effective and real 
masses is caused by interaction between the electrons and the ionic lattice it is 
not safe to use the idea of electron pressure incautiously. Instead we may derive 
the required result by consideration of the difference in total electron energy 
between the unrelaxed and relaxed states ; since for a given strain the elastic 
energy is proportional to the elastic modulus, we may use the energy lost as 
heat in the relaxation process as a measure of Ax, other things being equal, 
Thus to compare the metal having n electrons of effective mass m* with one 
which is identical except for having n electrons of real electronic mass, for a given 
shear the unrelaxed Fermi surface is the same in both, but the former has an excess 
electronic energy which is m/m* times that of the latter. In  consequence the 
attenuation constant, for a given value of T, is m,”* times that in the free-electron 
metal. T h e  results expressed by (65) and (67) represent this more general case if 
m is replaced by m*. 

It would be unwise to infer from this that the general expressions for a can be so 
simply modified to allow for departures from the free electron model. Indeed it 
seems likely that the method of analysis used here is not applicable in general, since 
there is not the possibility of a unique division of the system into conduction 
electrons and lattice. A start towards the solution of the problem for arbitrary 
Fermi surfaces has been made by Blount (1959), which is sufficient to indicate how 
further progress may be made, but which has not yet yielded any results of wide 
applicability. We therefore revert to our discussion of such cases as can be treated 
as local relaxation phenomena. 

The  process we have analysed, relaxation following a shear deformation, is 
exactly analogous to viscosity in a liquid, and in fact one of the first explanations 
(hlason 1955) of the observed high attenuation of ultrasonics in pure metals at low 
temperatures was in terms of the viscosity of the electron gas. Since the viscosity of 
a gas is proportional to the free path, we expect as Z increases at low temperatures to 
find a greater viscous damping of the lattice oscillations. This expectation is of 
course also expressed in (65) and (67) when qZ<l,  and is verified by observation, 
as shown in figure 41. This figure also shows how the attenuation drops when 
the metal becomes superconducting. From observations (Bommel 1955) on well- 
prepared single crystals it has been made fairly certain that the electronic contribu- 
tion to  U vanishes as the temperature goes to zero. This result has a certain value 
in the study of the non-superconducting state of the metal, for it enables extraneous 
sources of attenuation to be allowed for. Thus o. does not drop to zero in the 
superconducting state of a polycrystalline sample, presumably because of scattering 
at grain boundaries which is unaffected by the superconducting transition. If 
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one may assume that the residual, non-electronic attenuation is temperature- 
independent in the range of interest, the electronic part may be determined 
accurately by subtraction. We shall say nothing more of the behaviour in the 
superconducting state, which is of great interest but not obviously relevant to the 
present study. 

Once we leave the highly idealized models of metals with one spherical Fermi 
surface, other effects can come in and make important contributions to the 
attenuation. With one non-spherical Fermi surface, for example, it is possible 

1 ULTRASONIC ATTENUATION IN TIN 
AS A FUNCTION OF TEMPERATURE 

FREQUENCY V = 103 MC/SEC I I 

Figure 41. Temperature \variation of attenuation of longitudinal wave (10.3 Mc,/s) in a very pure 
single crystal of tin. The  superconducting transition occurs at 3.7"K. (After Bommel 1955.) 

to have losses associated with pure compression as well as with pure shear, in 
hydrodynamical terms second as well as first viscosity. It is only necessary that 
the equilibrium form of the Fermi surface shall depend on the volume of the 
metal, so that a sudden uniform compression, which produces a uniform expansion 
in reciprocal space, leaves the Fermi surface in a non-equilibrium state. One 
would not expect this effect to be important in a metal whose Fermi surface was 
nearly spherical, but it might well be comparable to the effect of shear in a metal 
whose Fermi surface is very close to, or just touches, the zone boundary ; for 
the energy gap at the boundary and consequently the degree of contact are probably 
sensitive functions of the atomic volume. In  principle it should be possible to 
estimate the sensitivity of the Fermi surface to volume changes by measuring the 
imaginary parts of the bulk modulus, and hence to discover whether there is likely 
to be contact with the zone boundary. Measurements of the attenuation of 
longitudinal and transverse waves on the same sample, under conditions such that 
qlg 1, appear at first sight promising, but there are difficulties. Since all metals 
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are elastically anisotropic, the simple concepts of bulk and shear moduli are 
inapplicable except to a finely polycrystalline sample whose crystallites are small 
compared to the wavelength. If such samples are used there will probably be 
grain-boundary attenuation as well as electronic attenuation, and the only method 
known at present to estimate this is to use the superconducting behaviour already 
discussed.? Unfortunately the group I metals for which this study would be 
particularly interesting, being the only metals in which the Fermi surface is likely 
to have but one sheet, do not become superconducting. It would therefore be 
necessary to use carefully prepared single crystals, having small residual attenua- 
tion, and to measure the attenuation of the different waves in different directions 
chosen so that the shear processes in each were identical. 

When the metal has more than one Fermi surface, additional attenuation may 
result from the transfer of electrons from one to another. For example, uniform 

- 

Figure 42. Transfer of electrons between bands as a result of uniform compression. 

compression alters the energy discontinuities at the zone boundary and may 
therefore shift the energy bands in different zones with respect to one another, 
as illustrated in figure 42 for a hypothetical metal which has just enough electrons 
to fill the zone, but a small energy overlap so that the Fermi surface occupies two 
zones. In  the cases we have mentioned the calculation of the attenuation constant 
when ql< 1 reduces to a calculation of the energy difference between the unrelaxed 
and relaxed electron distributions, combined with a knowledge of the relaxation 
time for the appropriate transition. If the shape of the energy surfaces is highly 
dependent upon deformation, and especially if the effective mass is small so that 
the transfer of a small number of electrons involves a considerable energy change, 
the metal may show an abnormally high attenuation in comparison with the free- 
electron model. Such is presumably the explanation of the fact that 01 is quite 
readily measurable in bismuth (Reneker 1959), although the effective number of 
conduction electrons is extremely small. 

When ql is greater than unity, the current which balances the effective lattice 
current is not carried by all electrons, but more particularly by those whose velocity 

t It might be possible to correlate the temperature variation of attenuation with that of electrical 
resistance and so detect the temperature-invariant part of the attenuation. I t  is not certain, however, 
that the phonon-controlled mean free path is the same in the two phenomena. Presumably a careful 
study of superconducting metals would enable this point to be investigated, so that ultimately some 
use could be made of polycrystalline non-superconductors. 
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component in the direction of wave propagation equals the wave velocity. One 
may expect that the overall sensitivity of the Fermi surface to deformation is still 
a measure of the effective lattice current, which is to say that one may expect (58) 
and (63) still to describe qualitatively the variation of 01 with ql. But there will 
be quantitative differences depending on the properties of the electrons on the 
effective zone in relation to the average over the whole Fermi surface. A complete 
theory has not been worked out, and until it has one should be cautious about the 
use of the free-electron theory for the quantitative interpretation of results on 
real metals. 

We turn now to the effect of a magnetic field on the attenuation, considering 
first a free-electron model for which the calculations are straightforward in principle, 

I , 
i i 6 i i h $ b  e o @  

H (gaurs -cm) 
-10, 

Figure 43. Oscillatory variation of attenuation of longitudinal waves (75 Mcls) in a very pure single 
(After crystal of copper. 

Morse and Gavenda 1959.) 
The  wave is propagated along [OOl]  and H is applied along [loo]. 

even though they may involve a considerable amount of numerical work to evaluate 
the answer. The  general results expressed by (58) and (63) are still valid, and the 
problem reduces to a calculation of y. What is found in practice (Bommel 1955) 
is that when qZB1 the attenuation is an oscillatory function of field strength, as 
shown in figure 43. A na'ive interpretation of this, which appears to agree with 
the experiments as regards the field strength involved, relates the variations of a: 
to the relative sizes of wavelength and orbit diameter. For example, in the 
simplest case (j, j )  the orbits and electric fields associated with the wave are repre- 
sented in figure 44 ; E and U are parallel and pij is the reciprocal of the conductivity 
in this direction. If the field varies as Eei(wL-gz) and the orbit, centred at zo, 
has radius R, the average field strength around the orbit is E(xO)JO(qR). This 
is an oscillatory function of qR whose absolute amplitude has maxima whenever 
the orbit diameter is very nearly ( n  + i) wavelengths. When we take into account 
all electrons at one point having a given orbit diameter we must allow for a distribu- 
tion of centres, which leads to the average field experienced being E(zo)  [Jo(qR)]2. 
If all the electrons had the same orbit diameter their effective conductivity would 
contain the term [JO(qR)l2, and so y and cy. would be oscillatory, the maxima of 
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[J,(qR)]Z corresponding to maximum conductivity and minimum attenuation. 
Since RccH-l we might expect to find o( an oscillatory function of H-l with 
regular period. This is similar to the de Haas-van Alphen effect and cyclotron 
resonance, but here the effect involves the spatial extensions of orbit and wave, 
not their periods as in cyclotron resonance. As a result the frequency at which 
the magneto-acoustic oscillations should occur is of the order of a hundred times 
less than the cyclotron resonance frequency in the same magnetic field, the ratio 
being 0~26a , /~ , .  This agrees well with what is found in practice (Morse, Bohm 
and Gavenda 1958), and it is disturbing therefore to discover that a full working 
of the theory destroys the predicted effect in this particular case. If the Fermi 
surface is spherical different electrons on the surface have different orbit radii, 

Figure 44. the case (j, j). 

and it is necessary to integrate over all parts of the Fermi surface. 
is that for a sphere of radius A,, when qZ91, 

The  final result 

l / y  = 3 [Jo(mx)12x,/(1 - x 2 ) d x ,  where m = Zk,q/eH. , , . . . .(71) 
I O 1  

The  meaning of this expression is clear ; 3x d( 1 - 9) dx is the fraction of electrons 
lying within a cylindrical shell of radius k,x and thickness A,dx, having its axis 
parallel to H. When E is parallel to H ,  as here, this is the weighting factor to 
be ascribed to the orbits of radius hk,x/eH. The  vanishing of the weighting 
factor at the upper limit of integration corresponds to the fact that with this 
geometry the electrons of largest orbit make a vanishing contribution to the 
current, for their velocity is normal to the electric field. There is thus no especial 
orbit size which can dominate the conductivity, and it is not surprising to find 
on carrying out the integration of (71) that y is a monotonic function of H .  If 
the Fermi surface is not spherical it may be possible for one particular orbit size 
to be sufficiently dominant to produce oscillations in y ; for example a cylindrical 
Fermi surface, oriented so that its axis is not parallel or normal to H ,  will have 



Experimental Analysis of the Electronic Structure of Metals 25 I 

all electrons on the surface executing the same elliptic orbit, and very marked 
oscillations can be expected. But in less extreme cases one can hardly hope for 
anything better than a broad spectrum of orbit sizes, so that even if any oscillations 
are seen they will be confined to one or two cycles only, higher harmonics (orbit 
diameters of several wavelengths) being smeared out. If this should be the explana- 
tion of the oscillations observed, it is of interest as showing the phenomenon to be 
one which is dependent on the Fermi surface departing from spherical shape in 
a particularly favourable way. But there are other possibilities of explanation, 
which we defer until we have discussed the other transverse field geometries 

Here the situation is a little more complex, since it is not sufficient to have E 
and U parallel to get J and U parallel ; both transverse and longitudinal electric 
fields are needed. I n  the case (k, j) we wish to know what field E,  is needed to 
produce a given Jk,  that is we have to substitute in (58) the component of resistivity 
P k k  appropriate to a sinusoidal electric field distribution ; in the case (i, j )  we have 
to substitute p i i  in (63). Each of these involves calculating the components u k k ,  

aii and uik  of the conductivity tensor, since for example Pkk = crii/’(aii u k k  + O i k 2 ) *  

Expressions have been given by Rodriguez (1958 b), which although correct are 
unfortunately written in such a form as to mislead him into making a number of 
erroneous statements about their behaviour, particularly that they are not oscillatory 
(it is perhaps unnecessary to remark that his physical argument to explain why 
they are not oscillatory is also quite unsound). For example in the interesting 
limit q l91  the conductivity component dok, due to a plane section of the electron 
assembly, cut normal to H (=  Hi)  and containing d N  electrons per unit volume, 
takes the form 

(k, i) and ( 4  j). 

which is certainly oscillatory, as are aik and aii also. In  contrast to the case (j ,  j), 
the central section of the Fermi sphere now has considerable weight, for the 
displacement of the surface of the section carries, as it were, all the inner electrons 
with it ; alternatively expressed, the central electrons have their velocities in the 
plane normal to H which also contains E, and are therefore efficient conductors. 
I n  fact when we come to integrate over all sections the situation is like what we 
found in cyclotron resonance, that the extremal section dominates the average, 
and the components of the conductivity oscillate with a periodicity characteristic 
of the extremal section. We thus expect to find an even periodicity when cy is 
plotted against H-l, the separation of neighbouring maxima being mlf iqk , .  The  
curve shown in figure 43 exhibits this clearly ; from the number of periods visible 
one may feel sure that there is no averaging of frequencies involved, but that one 
group of orbits is dominating the behaviour. It is therefore rather disturbing to 
find that the value of k, deduced from this curve is only 0.8 of what is expected ; 
the discrepancy is large enough to need explanation. 

It is possible that the explanation lies in the non-spherical nature of the Fermi 
surface of copper-not that it is likely to have any dimension as small as 0.8 times 
the diameter of the free-electron sphere (see p. 258), but it may be that the theory 
of the effect in non-spherical surfaces will reveal some unconsidered remedy for 
the discrepancy. This is not however a very hopeful suggestion; one would 
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surely expect the periodicity to be governed by the full extension of the orbit in 
the direction of q, since it is at the extremes of the orbit that the electron spends 
a significant time in a constant field. If this difficulty can be cleared up the study 
of magneto-acoustic oscillations7 should prove a useful method of determining 
specific dimensions of the Fermi surface. It is therefore worth examining the 
conditions which must be satisfied if the oscillations are to be observed. The 
electronic free path must be long enough for an orbit to be completed between 
collisions ; one may guess a collision damping factor of the form e-2nR’z, so that 
I must be at least as big as the orbit diameter, or perhaps three or four wavelengths, 
if several cycles of the oscillation are to be observed. For a sound velocity of 
2 x lo5 cm sec-l and a frequency of 100 Mc/s this implies that I must approach 
lop2 cm, which is at present achievable only with very few metals. The magnetic 
fields required are quite modest, of the order of 10 kc;, so that the main limitation 
of this method is the purity of the sample. 

The  possibility of oscillatory behaviour in the cases (k, j)  and ( i ,  j )  makes one 
suspicious about the explanation of the oscillations in (j, j) tentatively advanced 
above. For the elastic anisotropy of the metals used implies that only along very 
special directions of high symmetry will the wave be purely transverse or longi- 
tudinal. In  a polycrystal most crystallites will have electric fields with components 
not parallel to H, and it is possible that these are responsible for the oscillatory 
behaviour. One cannot be sure of this, but it could be checked by a study of single 
crystals of copper, as pure as those used by Morse to obtain figure 43, to see whether 
the oscillations only appear when q does not lie along an axis of high symmetry. 

One last point to be made in connection with the transverse field effects concerns 
the limiting behaviour in high magnetic fields, when qR<1. The different cases 
have theoretically different limits, For example in (j ,  j) the coiling of the orbits 
into a small space allows lattice collisions to take over entirely the business of 
establishing the electronic current ; y tends to unity, and a: to zero, as H-’. In  
the other two cases the combined effect of lattice collisions and magnetic field is 
to establish a current at right angles to the required direction, and electric fields 
are still needed. This does not prevent the attenuation going to zero as H - 2  in 
the other transverse case (k, j), but in the longitudinal case (i, j) a: tends to the 
limit &(nmv,q*Z/Mv,,). This has the same form as in zero field, when qZ< 1 (see 
(67)), but with one quarter of the coefficient. Since for observing the oscillations ql 
must be much greater than unity, the limiting value of a: will be several times the 
value in zero field. I t  should of course be remembered that this analysis of the 
limiting behaviour is only valid for a spherical Fermi surface ; magneto-resistance 
may considerably alter the behaviour in high fields. 

The last magneto-acoustic effect to be treated is the case (j, i )  discussed in 
some detail by Kjeldaas (1959). It is convenient here to think of the transverse 
wave as circularly polarized, setting up a circularly polarized electric field. Since 
H is parallel to q the electrons perform helical paths about q as axis, and there 
is one particular group which have the correct component of velocity parallel to q 
to rotate in their orbits at just the same rate as the field in which they find 

t In a short note (Pippard 1957 b) proposing this method of studying metals the effect was 
referred to as magneto-acoustic resonance. This is not a resonance phenomenon in the accepted 
sense and the term should be dropped, It is as well to point out also that in this note, through 
faulty reasoning, the condition of minimum attenuation was stated to be one of maximum attenuation. 
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themselves. These electrons in synchronism with the field are particularly good 
conductors and when ql91 make a dominant contribution to the real part of the 
effective conductivity. The  phenomenon can be thought of as a cyclotron resonance 
between the electrons and the ultrasonic wave, but the frequency of the latter is 
enormously shifted by the Doppler effect of the electronic motion. We shall 
analyse the problem for a very special simple model in which the Fermi surface 
has axial symmetry about q (see figure 45). An electron at 0 has cyclotron 

Figure 45. Illustrating the Kjeldaas (1959) effect. 

frequency wc = Heaocosq5/(Rk,), where k, is the radius ON, and is moving in the 
x-direction, parallel to q, with velocity vo sin 4. The  Doppler-shifted frequency w' 
which it experiences is q(uosinq3-vJ, and the relative frequency is thus given 
by the expression 

Aw EZ wc-w'  = qv,sin+(I'/S- 1 +u,cosec~/uo) ,  

where I' = eH/(Kq) and S = k, t an4  = MN. 
If we neglect the term ~ f ~ c o s e c ~ / ~ f ~ ,  which is equivalent to assuming the wave to 
be at rest, the resonance condition is seen to be that I? = S, S being the sub-normal 
of the curve at 0. As H and hence r change, different parts of the Fermi surface 
come into resonance. The  calculation of the effective conductivity uer is straight- 
forward, since all that is necessary is to forget about H and instead to imagine each 
electron in a uniform electric field which rotates with frequency Aw. A short 
calculation then shows that 

. . . . . .(73) 

where 

Zk, cos 4 
dk$, s 1 +iAw.r  l / y t  = = c 

1 /C = lk, COS 4 dk,, s 
. . . . .(74) 

A u  being, of course, a function of k,, given by (73). We now consider what 
happens when 1 and r are very large. The  only significant contribution to the 
real part of yt-l comes from the region around the resonance point where Aw = 0, 
the rest of the Fermi surface being responsible for the imaginary part of yt-l. I n  
evaluating .52(yt-l) we may therefore take W, cos 4 in the integrand as constant, 
and after a certain amount of manipulation obtain the result 

. . . . . .(75) 
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while 

in which 9 means that the principal value of the integral is to be taken. It will be 
observed that except for the field-independent C both parts of yt-l are determined by 
the geometry of the Fermi surface. Now from (58) CY depends on 9 ( y t  - l), and both 
&?(yt-l) and 4 ( y t - l )  enter into this. In  particular 

if L Q - 1 )  +.4(yt-l) ,  U l c c  l i 'a(yt- ')  

if 9 ( y , - ' )  < ,Q(yt-l), a =qyG-1)/[J(yt-1)12. 

If the Fermi surface is a sphere of radius k, (75) and (76) are readily evaluated 

The  variation of a: with I?, i.e. with H, is shown in figure 46. The  point of particular 
interest is the absorption edge which occurs when r = k,, and which marks the 
field strength at which there cease to be any electrons which can resonate with 

r/ko 
Figure 46. Variation of attenuation with field for various values of WT. (After Kjeldaas 1959). 

the ultrasonic field. Such an edge may be expected to occur with any elliptic 
limiting point (in the nomenclature which Azbel' and Kaner use for cyclotron 
resonance), and it is easy to show that, whether or not the surface is axially sym- 
metric, the value of r at the absorption edge is just K-'/z, when K is the Gaussian 
curvature at the limiting point. 

At first sight this elegant result appears to offer an attractive opportunity for 
analysing the Fermi surface, particularly of those metals for which it is difficult 
to prepare clean surfaces for the study of the anomalous skin effect, or those whose 
mosaic structure renders them unfit for de Haas-van Alphen studies. But certain 
reservations must be made. Even if we leave aside the difficulty of obtaining 
circularly polarized transverse waves,? there still remains the fact that in most 

t If linearly polarized waves are used, as is experimentally much easier, the theory is hardly 
altered, as the wave can be analysed into two circularly polarized waves of opposite sense, which 
resonate with almost equivalent regions on opposite sides of the Fermi surface. There is, however, 
a small difference in velocity of the two waves, so that a rotation of polarization of the plane wave is 
to be expected. This may prove very annoying in practice. 
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directions of propagation the waves will not be purely transverse. It may be that 
a longitudinal component will not affect the form of'the absorption edge, but this 
needs careful analysis. Along directions of high symmetry in cubic metals 
(e.g. (loo), (110) and (111)) the present analysis should be valid, and in some 
cases determination of the curvature of the limiting points in these directions might 
almost entirely fix the form of the Fermi surface, if there is but one sheet as in 
the alkali and noble metals. It must also be remembered in making a provisional 
assessment of the method that the sharpness of the absorption edge is a consequence 
of a very high value of ql ; according to Kjeldaas's calculations, a value of 50 is 
desirable, and this we have seen involves material of extremely high purity, as 
well as high acoustic frequencies. Finally we must point out the possibility of 

Figure 47. Maximal sub-normal when Fermi surface has no limiting point. 

ambiguity in interpretation of the results. If the Fermi surface has no limiting 
point, because of contact with the zone boundary, it will have another region at 
which S is maximal (figure 47), and this will give rise to an absorption edge. The  
behaviour of yt-l here is quite different from that at a limiting point, for the real 
part becomes infinite as (SmaX-- r)-''Z while the imaginary part tends to become 
rather small. The  attenuation goes to zero at the absorption edge, but as 
(S,,,, - I')'/Z, i.e. with a vertical tangent, rather than as (S,,, - r), with a finite 
slope, as it does if there is a limiting point. In  principle the two types of edge 
can be discriminated, but one might have difficulty unless ql were very high indeed. 
Nevertheless this experiment promises to have considerable interest, and there is 
quite a good chance that it will yield information of real value. 

4.6. Size Effects 
I t  is possible, though difficult, to prepare a thin film or wire in a sufficiently 

pure state that at low temperatures by far the most potent scattering mechanism 
is by collision of the electrons with the surface of the sample. Measurement of 
the conductivity of the film or wire, combined with some assumption about the 
scattering properties of the surface, enable an estimate to be made in principle of 
the conductivity of the metal for a known free path (a calculable function now of 
the direction of the electronic trajectory). In  a film for example the dominant 
electrons are those moving parallel to the surfaces, and the information which 
might be extracted is to all intents the same as is yielded by the anomalous skin 
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effect. It seems, however, that the latter is a much easier and more reliable 
technique, having the advantages that the exact nature of the surface scattering 
is of only minor importance, and the preparation of clean samples of any crystal 
orientation is not too difficult. With the film, on the other hand, only certain 
orientations of single crystals can be made, by epitaxial growth, and it is extremely 
hard to ensure that they shall be uncontaminated by residual gas in the evaporating 
oven. Moreover the films made in this way are very liable to vary in thickness 
and even to have holes in them which greatly obscure the interpretation of the 
measured resistance. Thin monocrystalline wires are more readily prepared, as 
whiskers, and may be obtained very pure so that surface scattering is dominant. 
But they also are limited in the range of orientations possible, and in addition do 
not yield the specific information about the electronic structure that is yielded 
by films and the anomalous skin effect, for the electrons moving nearly parallel 
to the axis are too few in number to play a dominant role. It does not seem 
therefore that the prospect of using these simple size effects as analytic tools is 
very promising. 

There is more hope that useful information will come out of such measurements 
in the presence of a magnetic field, though here again the limitations are such as 
to make it no more than an outside chance. The  periodic oscillations of conduc- 
tivity of a film in a magnetic field normal to its plane, predicted by Sondheimer 
(1950) but never observed, and the similar effect observed by Babiskin and 
Siebenmann (1957) in a wire, but not treated theoretically in detail, might possibly 
yield data on the extension of orbits in a given field. It is rather disheartening to 
find that even for a free-electron metal with surface scattering completely dominant 
the predicted oscillations are so highly damped as to be observable for only two 
or three cycles, for this suggests that there is no one group of electrons which 
can govern the periodicity as in some of the other phenomena we have analysed. 
The  interpretation of the data for a real metal is therefore likely to be difficult 
unless the electronic structure is already known. 

Finally we may mention the proposal by Azbel’ (1958) to study the Schubnikov- 
like oscillations of the skin resistance (see p. 236) in a rather thick monocrystalline 
film. He points out that no oscillations will be observed until the field is high 
enough for the electronic orbit to lie completely within the film, and that the 
field strength at which any particular oscillation appears determines one dimension 
of the Fermi surface. We shall not enter into this proposal any further here ; 
a full discussion may well await the performance of the experiment. As this 
involves the preparation of a thick film ( >  cm) so perfectly crystalline as to 
show the oscillations, and so pure that the electron can complete an orbit entirely 
within the film, we believe that a revolutionary advance in the art of thin films 
will be necessary before it is worth trying. 

8 5 .  A P P L I C A T I O N S  
We shall not attempt to give a complete survey of the applications made up 

to the present of the methods we have discussed. It seems more profitable to 
take the view that these studies are still in their infancy, and to describe a few 
examples which illustrate the scope and limitations of the methods. We therefore 
pass over without comment a large amount of work on the de Haas-van Alphen 
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effect in moderate fields, which has shown the presence in many metals of small 
inclusions of holes or electrons; a full discussion has been given by Shoenberg 
(1957). It is not perhaps so justifiable to let pass without discussion a great 
diversity of valuable work on bismuth, graphite and other semi-metals, in which 
the Fermi surfaces are all small in extent, and the revealing properties, being 
capable of examination in moderate magnetic fields, have been studied in some 
detail. Our excuse for this neglect is that these substances form a special class 
of their own, and deserve an article to themselves if all that is known about them 
is to be placed in proper perspective.? By adopting this cavalier attitude we have 
narrowed down the field sufficiently to permit what is left to be examined at leisure, 
and we shall concentrate on results obtained for copper and lead. 

The  analysis of the Fermi surface of copper (Pippard 1957 a) illustrates both 
the strength and the weakness of the anomalous skin effect for this work. The  
surface resistance varies in a complicated manner with crystal orientation, the 
extreme variation amounting to nearly a factor of two. Only moderate precision 
(about 3%) was needed to reveal the anisotropy of resistance with sufficient 
accuracy to make detailed analysis worth the considerable effort. There is no 
need to recapitulate the arguments and numerical procedures which led to a single 
closed surface whose variations of curvature were able to explain the observations. 
The  surface is derivable from a sphere by pulling it out along the (111) directions 
and slightly denting it in the (110) directions, the ratio of maximum to minimum 
radius being 1-16, Although the variations of radius are so small, the high (cubic) 
symmetry of the surface makes them sufficient to introduce slight concavities, so 
that there are regions of very large radius of curvature contributing strongly to 
the effective conductivity. This is how the large anisotropy of resistance comes 
about, and this is the strength of the method, that small variations of radius can 
lead to large variations of resistance. The  shape of the Fermi surface is thus 
rather precisely determined, particularly around the flattened parts. The  absolute 
size of the surface can be found no more accurately than the probable error of 
the readings, and although this would not be of great importance in many cases, 
it happens that copper is not one of these. The  measurements suggest that the 
surface is of such a size as to hold, within a few per cent, one electron per atom. 
If we were genuinely dealing with independent electrons we should feel no hesita- 
tion about taking this result as confirmation that only the valence electrons occupy 
unfilled Brillouin zones, and scaling the surface so that it was precisely the size 
to hold one electron per atom, that is, half the volume of the Brillouin zone. But 
the quasi-particles are not independent electrons, but only something like electrons, 
and it is not obvious that the Fermi surface of the quasi-particles should contain 
as many states as there are electrons. Plausible arguments may be developed in 
support of this view, but they are not altogether convincing, and although we shall 
adopt it as the most likely hypothesis it remains a weakness in the chain of reasoning. 
When the derived surface is scaled to occupy half the zone it is found that it will 
not quite go in, the (1 11) extensions causing overlap beyond the zone boundaries. 
Now it is just at the points of maximum extension that the shape is least securely 

The following papers give some idea of what has been done in this field : 
For bismuth ; Abeles and Meiboom (1956), Heine (1956 b). 
For graphite ; Soule (1958 b), McClure (1958). 

17 
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determined, for the radius of curvature is small here, and the contribution to the 
conductivity correspondingly small. By means of crude arguments it may be 
contended that the most plausible modification to make the surface fit into the 
zone is to have positive contact with the boundary, as shown in figure 48, and this 
is what is proposed as the Fermi surface in copper. I t  should be emphasized that 
the extent of the contact, its existence even, is conjectural, but it is almost certain 
from the data that the deformation of the surface from spherical form is of the type 
and roughly of the magnitude shown here ; that is, it is pulled out towards the 
(1 11) faces, and either touches them over a small area or just fails to touch them. 
The  insensitivity of the experimental results to the form of a critical region like 
this is a real weakness of the method. 

Recently the de Haas-van Alphen effect has been discovered in copper whiskers 
(Shoenberg 1959), and although the investigation is far from complete it is worth 

Figure 48. The  Fermi surface in copper (redrawn from Pippard 1957 a). The  dark patches 
mark contacts with the zone boundaries. 

seeing what might be expected if the proposed Fermi surface is correct. For a 
considerable range of orientations of the magnetic field around the (100) axes 
(within a cone of semi-angle about 30') and around the (111) axes (semi-angle 
about 15'), the central section normal to the field does not intersect the contact 
regions, and the section is bounded by a closed electron orbit whose area is nearly 
equal to that of a free-electron sphere. One would expect the period of the 
oscillations to vary only by a few per cent. The  results up to now, of which 
figure 49 is typical, indicate that for these orientations only one period is present, 
and this is nearly independent of orientation, but the oscillations have not been 
followed more than 8-10' from either axis as the amplitude falls off rapidly. This  
may be an effect of mosaic structure, which is less deleterious when the crystal is 
oriented so that by symmetry the period is extremal. If the field lies along or 
near a (110) axis, the central section cuts four contact regions and in periodically 
extended reciprocal space the bounding curve is a slightly re-entrant hole orbit 
whose area is about 60% of the electron orbits we have just considered. There 
are also non-central extremal (minimal) sections, each enclosing two contact regions, 
which have distinctly smaller areas still. Oscillations of even longer period 
should be observed over a wide range of angles, particularly round the (111) 
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directions, corresponding to orbits enclosing one contact region, but in fact they 
have never been detected. Nor indeed has an oscillation of any period been 
found yet in a whisker orientated along (110). I t  is dangerous to speculate on 
the meaning of the absence of any particular de Haas-van Alphen oscillation since 
the factors controlling the amplitude are so little understood, but it is clear that 
the behaviour around (1 10) or the long period oscillations, if either can be observed, 
will prove decisive in the question of whether there is contact with the zone 
boundary. If the views expressed on p. 204, concerning the non-viability of orbits 
which pass close to contact regions, should turn out to be correct, it may be 
impossible to find any oscillations in the critical directions, and the question of 
contact will remain conjectural. It should not prove impossible to discover whether 
there are regions of abnormally high scattering probability ; a careful examination 

Figure 49. Oscillogram of de I 1x1s-van .Alphen oscillations in copper (Shoenberg, unpublished). 
As the rate of variation of If decreases the oscillations spread out, the period AH being 
virtually constant. 

of the magneto-resistance might serve, or, a more elaborate test, a study of the 
sharpness of the absorption edge in the Kjeldaas ultrasonic experiment when 
propagation is along a (111) axis. Whether or not these experiments will yield 
the particular information desired cannot be predicted, but it is certain that there 
is a strong case for a systematic examination of the properties of copper, by cyclotron 
resonance, magneto-acoustic effects, high field galvano-magnetic effects, and any- 
thing else which might be expected to yield its contribution, however small, to 
the general picture. The  technical problem of preparing good enough samples 
for these studies has been overcome by several workers, and in other respects 
copper seems to be almost an ideal metal for a concentrated attack on the elucidation 
of the electronic structure. It does not seem to be so easy to prepare copper crystals 
of really low residual resistance as it is with silver or gold, but on the other hand 
whiskers are more readily produced, and copper surfaces are much more easily 
electropolished than surfaces of the other noble metals. If the shape of the Fermi 
surface can be certainly established, systematic measurements on the temperature 
variation of the de Haas-van Alphen amplitude or on cyclotron resonance (or 
preferably both) should enable a velocity to be ascribed to every point. If this can 
be done the way is clear for a serious examination of the properties of copper- 
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specific heat, transport effects, etc.-to discover the extent to which they are 
quantitatively intelligible on the basis of a one-particle model. 

Between the reasonable expectation of an elucidation of the structure of copper, 
and the hope for similar success with so much more complex a metal as lead, lies 
a gulf whose extent can hardly be guessed. I t  is certainly a measure of the power 
of the de Haas-van Alphen effect that it can yield any information of value in the 
latter case; in fact this is to understate what Gold (1958) has achieved. He has 
shown that the oscillations, of which as many as four might be observed simul- 
taneously, can be analysed into three groups, which he associates with different 
sheets of the Fermi surface. Not all oscillations are observed over a wide range of 
angles, and the amplitudes vary considerably and in a complicated manner, all of 
which is ingeniously incorporated into the interpretation. The  form of the Fermi 
surface is not so much synthesized from the data-it is rather doubtful whether this 
could be done by a systematic and objective procedure-as adapted by reference to 
the data from a scheme suggested by the free-electron model. As discussed on 
p. 186, if a sphere containing 4 electrons per atom is dissected and reconstructed in 
the various Brillouin zones, a quite remarkable set of surfaces emerges, which with 
a little smoothing at the corners may be taken to represent what would be expected 
if the energy discontinuities at the zone boundaries were small. Gold finds that 
these surfaces account, with comparatively little modification, for most, if not all, 
of his observations. The  first zone is full and therefore contains 2 electrons and 
contributes no oscillations ; the second zone has its maximum energy at the 
centre, and contains 1.6 electrons, leaving a nearly spherical hole at the centre 
which gives a rather short period oscillation of isotropic frequency ; the third 
zone is filled only along the edges of the zone, giving in periodically extended 
reciprocal space the tubular lattice illustrated in figure 13 ; and lastly the fourth 
zone has a small number of electrons in each corner which combine in periodically 
extended space to form a set of cushion-shaped surfaces. There is little comparison 
with other data possible. The  total area may be compared with an estimate based 
on anomalous skin effect measurements on a polycrystalline sample ; even allowing 
for poor polish on the surface of the latter there seems to be some discrepancy, the 
total area of Gold’s surfaces being distinctly too high. The  skin effect measure- 
ments certainly need repetition under better conditions before one can conclude 
that they offer serious objections to Gold’s construction. It is also possible to 
estimate the mean Fermi velocity on each surface from the temperature variation 
of the amplitude of the oscillations, and hence to calculate the expected value of 
the specific heat coefficient y .  This comes out about 40% too high, not outside 
the considerable uncertainty of the estimate. 

I t  is probably not unfair to Gold to characterize his work as an ingenious, not 
unplausible, but not certainly established delineation of the Fermi surface. It may 
be that this starting model, the free-electron sphere, is a good approximation to the 
truth, but if it is not one may doubt whether the data do not contain too many 
ambiguities of interpretation to make it possible at this stage to proceed further 
with assurance. In  an ideal world one would doubtless settle the monovalent 
metals first, and then proceed cautiously to investigate the more promising multi- 
valent metals such as beryllium, magnesium, aluminium, etc., in the hope that 
with increased insight the more difficult metals would yield their secrets. As it is, 
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however, one can only expect a haphazard attack governed by rather secondary 
considerations such as the availability of suitable samples. We have tried here to 
assess the value of various methods, none of which has really been thoroughly 
tested. It is to be hoped that future work will confirm our general conclusion, that 
there is now a reasonable expectation of synthesizing from experimental data a 
valid model of a metal, and will reveal new ways of testing critically the inherent 
assumptions of the independent-particle model and the theory of transport 
processes. 

A P P E N D I X  
THE S T A N D A R D  METAL 

We choose as standard a monovalent metal whose atomic volume is 10 cm3, so 
The  electrons are assumed 

The magnitudes of the 
that there are 6.0 x loz2 conduction electrons per cm3. 
to be perfectly free, so that the Fermi surface is a sphere. 
relevant properties are as follows: 

Radius of Fermi sphere : KO = 1.21 x 108 cm-1 
Maximal cross-sectional area : do,,,, = 4.60 x 10le cm-2 
Fermi velocity : vo = 1.40 x lo8 cm sec-1 
Cyclotron frequency in a field of H gauss : U, = 1.76 x lo7 H radians sec-l 
Maximal orbit radius in a field of H gauss : R = 7.96/H cm 
Electrical conductivity with free path 1 cm : U = 1.21 x 10l11 ohm-l cm-1 
Electronic specific heat coefficient per unit volume : y = 632 erg deg-2cm-3 
Fermi energy : eo = 8.93 x 10-12ergs 

Degeneracy temperature : To = ea/K = 64 700" K 
= 5.57 ev 
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Note added in Proof. 
Since the article was written a very significant advance has been made by 

Shoenberg (1960), who has continued his examination of the de Haas-van Alphen 
effect in copper, silver and gold to the point where the general forms of the Fermi 
surface have become clear. The  variety of oscillatory periods and their angular 
dependence leave little doubt that there is contact with the zone boundary around 
the (111) position in all three, of the type shown in figure 48. The  area of contact 
is greatest in copper and least in silver. It appears that the contact region in copper 
is about 12% greater in diameter than was suggested by the anomalous skin effect, 
but this is probably not a serious discrepancy since the latter is not sensitive to 
small variations in this region. There are other discrepancies in detail which are 
still unresolved, and will remain so until a more extensive body of de Haas-van 
Alphen data has been collected and a thorough analysis made of all alternative 
interpretations. Recent measurements of the anomalous skin effect in silver by 
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V. M. Morton reveal a variation of resistance which is similar to that of copper 
but over a smaller range ; this agrees with Shoenberg’s suggestion of a smaller 
contact area, but it must be admitted that in the absence of his evidence for contact 
one would have been reluctant to infer it from the skin effect data. Nevertheless, 
however unwilling one may be to accept the idea that the same independent-particle 
model can be made to fit all the facts exactly, it is surely very unlikely that one set 
of facts will require contact and another set not. Clearly a good deal of examination 
of alternative models will be needed here also, and it will be particularly important 
to try to estimate the range of shapes which are consistent with the skin effect data. 

Cyclotron resonance has been observed in copper by Langenberg and Moore 
(1959) ; the results are not sufficiently detailed yet to allow a clear interpretation, 
but it is interesting to note that the cyclotron frequency shows singularities at 
certain orientations of the magnetic field which may be associated with a change 
in character of the dominant orbits according as the sections of the Fermi surface 
enclose electron or hole orbits. This behaviour indicates that studies of cyclotron 
resonance may yield topological information about the connectivity of the Fermi 
surface, quite apart from the quantitative information about the Fermi velocity 
which is discussed in the text. The  qualitative problem, of finding what sort of 
surface the Fermi surface is, has in fact been rather neglected in the article, and 
this recent work serves as a reminder of the fundamental importance of determining 
whether and where zone boundary contacts occur. 

But perhaps the most serious error in the article is one both of fact and of 
emphasis. It has been pointed out by Lifshitz and Peschanskii (1958) that open 
orbits are not confined to magnetic field orientations which lie in planes normal 
to the high symmetry axes discussed on p. 203. If H is oriented in such a way 
(say rather close to (100) or (110) or (111)) that some plane sections normal to H 
define electron orbits and some hole orbits, then there must be an intermediate 
set of sections which define open orbits. These latter are not regularly periodic 
trajectories of the type shown in figure 14, but are formed of a succession of 
different partial revolutions of the Fermi surface at different levels, such as will 
allow the general trend of the trajectory in reciprocal space to be linear but not 
parallel to a symmetry axis. This analysis crystallizes the meaning of Chambers’ 
(1956 b) ‘ quasi-ergodic ’ orbits, and shows them often to be genuinely open. 
For a Fermi surface such as that of copper open orbits are by no means a rarity, 
though they are confined to orientations of H which lie within cones centred on 
the axes of high symmetry. I t  is therefore possible to make a start at interpreting 
Gaidukov’s (1959) most valuable observations on the transverse magneto-resistance 
of the noble metals, which fails to saturate when H lies within just such cones as 
these. Indeed Priestley (1960) has shown that the details of the observations of 
saturation and non-saturation in gold are almost quantitatively explained on the 
basis of Shoenberg’s estimate of the size of the contact regions in the (1 11) direc- 
tions. As a result of this Russian work it appears for the first time as if a complete 
account of the high-field magneto-resistance may be given along quasi-classical 
lines (or of course the more sophisticated approaches mentioned in the text). 
This in itself is a conclusion of great importance, for, if justified, it removes what 
appeared to be a serious impediment to the understanding of transport phenomena 
in metals. I n  addition, the essential simplicity of the topological argument of 



A. B. Pippard 

Lifshitz and Peschanskii opens the door for the systematic use of magneto- 
resistance for determining the connectivity of the Fermi surface-a most attractive 
development in view of the elementary character of the experimental techniques 
involved. 

Further experimental work by Gavenda and Morse (1959) on magneto-acoustic 
oscillations in copper has revealed a long-period oscillation which may be inter- 
preted as an orbit around the contact region on the zone-boundary, the estimated 
size agreeing well with Shoenberg’s estimate, In  view of the discussion on p. 203 
it should not be a surprise to find that a detailed analysis of the effect in metals of 
arbitrary Fermi surface shows how the attenuation and its oscillations, particularly 
for longitudinal waves, are dominated by any regions which are especially sensitive 
to deformation, as one might expect the contact regions to be. It seems likely, in 
fact, that the apparently anomalous periodicity of the oscillations in figure 43 are 
to be explained in this way;  they do not arise from a central orbit, but from 
a rather squarer orbit (or a rosette-like hole orbit of the sort found by Shoenberg) 
which passes near four contact regions. The  dimensions of such an orbit are 
consistent with the observed periodicity. 

Our conclusion at the moment, then, is that there is every reason for optimism. 
Unless something unexpected happens the electronic structure of the noble metals 
should be fairly exactly known within a very few years, and the hoped-for test of 
the basic assumptions should then be possible, Moreover, it seems that there is 
a good chance that the independent-particle model will prove a close approximation 
to the truth. 
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