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 MATHEMATICS OF COMPUTATION
 Volume 67, Number 223, July 1998, Pages 965-986
 S 0025-5718(98)00954-5

 DISCRETE GAUGE INVARIANT APPROXIMATIONS OF

 A TIME DEPENDENT GINZBURG-LANDAU MODEL OF

 SUPERCONDUCTIVITY

 QIANG DU

 ABSTRACT. We present here a mathematical analysis of a nonstandard dif-

 ference method for the numerical solution of the time dependent Ginzburg-

 Landau models of superconductivity. This type of method has been widely

 used in numerical simulations of the behavior of superconducting materials.

 We also illustrate some of their nice properties such as the gauge invariance
 being retained in discrete approximations and the discrete order parameter

 having physically consistent pointwise bound.

 1. INTRODUCTION

 The phenomenological model of Ginzburg and Landau and its various general-

 izations [25] have been widely used in numerical studies of the vortex phenomena in
 both the low TC superconductors as well as the recently discovered high TC super-

 conducting materials. The mathematical analyses of the numerical methods used

 to solve the Ginzburg-Landau models are mostly confined to the conventional fi-
 nite difference methods in one space dimension [20] and the finite element methods
 in two and three dimensions [2], [6], [7], [8], [9], [10]. In practice, a very popular
 discretization of the Ginzburg-Landau equations is the gauge invariant difference
 approximation defined on a rectangular grid [3], [4], [14], [15], [16], [17], [18], [19],
 [21]. Retaining the gauge invariance at the discrete level is analogous with preserv-
 ing certain conservation laws and physical principles in the discrete approximation.

 It is often a property favored by physicists who have been using these models in

 studies of superconductivity. Numerical evidence suggests that the gauge invariant
 approximation is a valuable approach, but few rigorous mathematical analyses have

 appeared.

 In this paper, we present a mathematical theory for the convergence of a gauge in-

 variant difference approximation of the two dimensional time dependent Ginzburg-

 Landau model. The well-posedness of the initial boundary value problems for such

 a model, the long time asymptotics of solutions and the gauge invariance properties

 have all been studied in, for example, [5], [11], [13], [24] and the references cited
 therein. The finite element approximations have also been discussed by various
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 966 QIANG DU

 authors [2], [6], [7], [8]. However, due to the nonlinear coupling, an important
 pointwise estimate for the discrete finite element approximation is missing from all
 the analyses. In order to have a meaningful physical interpretation, such an esti-

 mate must hold, and indeed, it holds for the exact solution of the time dependent

 Ginzburg-Landau equations [5]. We show that, for the gauge invariant approxima-
 tion, the pointwise estimate can be obtained naturally at the discrete level, and

 rigorous convergence theory as well as error analysis can be established without

 any unjustified a priori assumption on the numerical solution.

 The paper is organized as follows. In section 2, the time dependent Ginzburg-

 Landau model is first presented, followed by a description of some useful notation

 and terminology. Gauge invariant difference approximations for the time dependent
 Ginzburg-Landau equations are presented in section 3. In section 4, we discuss the
 properties of the discrete schemes, establish certain a priori estimates and provide

 an error analysis. Some additional remarks are given in section 5.

 2. THE TIME DEPENDENT GINZBURG-LANDAU MODEL AND THE

 DISCRETE VECTOR FIELDS

 2.1. The time dependent Ginzburg-Landau model. Let r be the Ginzburg-
 Landau parameter, r1 a given positive relaxation parameter, (0, T) the time interval
 of interest and Q C Rf2 the region occupied by the superconducting sample. For
 simplicity, we assume that Q is the unit square and the applied magnetic field H is

 either a constant or a linear function of the spatial variables. The primary variables
 used in the time dependent Ginzburg-Landau (GL) model are the complex scalar-

 valued order parameter ob, the real vector-valued magnetic potential A, and the real
 scalar-valued electric potential kt

 In a non-dimensional form, the time dependent GL model is given by

 (2. 1a) f +iKq>o + (iV +A) -+f2 0 in Qx (O, T), at

 (2. lb)

 1( , + V@) + curl curl A = IQ2 V -* V) 112A in Q x (O,T) at /2iK -
 where 0b* is the complex conjugate of 0b. The boundary conditions are

 (2.1c) (-V,b+A,b).n=0 on]fx (0,T),

 (2.1d) curlA=H onFx(0,T),

 (2. 1e) r1(A+ Vq)) n = J * n on IF x (0, T),

 where the given applied current J is constant in space and satisfies J -curl H.
 The initial conditions are:

 (2.1f) g6(x,0) = boo(x) and A(x,0) = Ao(x) in Q.

 We assume that ob0 E A (Q) (the space of complex-valued functions whose real
 and imaginary parts are in the standard Sobolev space H1(Q)) and Ao E H1(Q)
 (the space of R2-valued functions whose components are in H1(Q)). In addition,

 we assume that J)ol I 1, divAo = 0 a.e. in Q and A. n = 0 on F.

This content downloaded from 129.234.0.202 on Tue, 12 Mar 2024 10:32:25 +00:00
All use subject to https://about.jstor.org/terms



 GAUGE INVARIANT APPROXIMATIONS 967

 It is convenient to introduce an auxiliary variable 4Da (x, t) - (J * x) /r and de-
 fine ( - 4>-a so that the boundary condition (2.le) may be replaced by the
 homogeneous boundary condition

 (2.2) at +V)* n=O on 1.

 FYom now on, we use (AL, A, (D) as the primary variables for the time dependent GL
 equations and still call 4 the electric potential. Note that the equations (2.la-b)
 can be written as

 a + iw;p'o =-,,(9 A),

 (2.3) a(A ag

 where 5 is the Ginzburg-Landau energy functional ([7], [25]):

 (1 ~ ~ ~~~21

 (2.4) 5(,A) - -V+A b + - L2)2-1-curlA - H dQ.
 4 2 (!v A) 4( 2 H

 The time dependent Ginzburg-Landau equations (2.1a,b) with the prescribed
 boundary conditions are gauge invariant in the sense that if (sb, A, 4) is a solution
 to the equations, so is ( 0, Q, 3) where e = ,iKf, Q = A + Vf, and E = D-f
 Questions related to the well-posedness of the above equations and the fixing of
 gauges have been studied in [4], [11], [13], [24] and the references cited therein.
 The gauge invariance has been a very desirable property for physicists who have
 proposed and who have been using these models.. It is also favorable to maintain
 such an invariance property at the discrete level where numerical approximations
 are made.

 2.2. Meshes and discrete vector fields. In order to simplify the presentation
 and the analysis of the approximation schemes, we now describe a pair of primal
 and dual meshes (or commonly referred to as a staggered grid). Let the primal

 mesh E be a uniform partition of the square Q with No vertices {xj }, N1 edges
 that are denoted by {Sjk} connecting xj, xk and N2 square cells that are denoted
 by {rjklm} having four counterclockwise labeled vertices xj, xk,x1 and xm. The
 centers of the cells are denoted by {Xjklm}. Let h be the mesh size. A dual mesh
 Y' is formed by shifting each cell by one half of the mesh spacing in each coordinate
 direction from the primal mesh (see Figure 1). Centers of the cells in E become

 vertices of E' and vice versa. The cell in E' containing xj is denoted by < and its
 area is IrjI. h> denotes the length of the edge in Z' that bisects Sj,k. hj'k = h
 unless both xj, xk are on the boundary of Q. In the latter case, the dual cell - in
 E' containing the boundary vertex xj is to be modified to only include the portion
 of the cell inside Q so that h k= h/2.

 The gauge invariant discretization of the time dependent Ginzburg-Landau equa-
 tions requires variously defined discrete vector fields. For a vector field vY E U = RNO

 defined by its component vj at each vertex xj, we use the norm

 (2.5) IIihIu,p = (S lvj JPIrII)1/P 1 < p < oc and llvllu,co = max lvj I
 31
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 Tjklm

 Xr X 7-

 I I

 IX.i xk r-j ;
 h - 1 k- -I-hk

 Xi Xk Xi Xk

 FIGURE 1. A rectangular grid and its dual. The pictures (from left

 to right) are for interior vertices, boundary vertices and vertices at

 corners.

 where the sum

 stands for the sum over all possible vertices xj. We let (, ) be the inner product
 corresponding to the norm fl * ||u,2-

 For a vector field f defined by its value fjklm at the center of each primal cell
 Tjklm having four vertices x3,Xk,Xl,Xm which are labeled counterclockwise, we use
 the convention that fjklm =-fmlkj if the vertices are labeled clockwise and denote
 the set of all vectors with this convention by V. V is a vector space isomorphic to

 RN2. On V, we also define the norms by

 flfl,P = (S jfjk1Mj jrjk1mj)/, 1 p < oc , and flfflv,OO =max lfjklml
 jklm jklm

 where the sum Zjklm stands for the sum over all primal cells Tjklm with vertices

 labeled counterclockwise. The inner product (., .)v corresponds to the norm 11 - 11v,2
 For a vector field A defined at the midpoint Xjk = (Xj + Xk)/2 of each edge Sjk,

 its component ajk represents a tangential vector ajktjk. Here, tjk = (Xk -xj)/h
 is a unit vector in the direction XjXk. We use the convention that ajk = -akj
 and denote the set of all vectors with this convention by W. W is a vector space
 isomorphic to RfN. On W, the norms are defined by

 jfAlfw,P = ( lajklPhhJk)'/, 1 < p < oc, and jlAfljWoO= max ajkj
 jk

 where the sum Zjk stands for the sum over all edges Sjk. The inner product (., )w
 corresponds to the norm || - fvw,2.

 Some discrete operators and discrete inverse inequalities concerning these dis-
 crete norms are also useful. For ui E U, we define W'= Vui E W by

 (2.6) Wjk (VU)jk h h
 on each edge Sjk.

 For g E V, we define w = V'L E W by

 (2.7a) Wjk = (V'1 )jk = gjklm - gjkl'm'
 hk
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 GAUGE INVARIANT APPROXIMATIONS 969

 on the common edge Sjk of two neighboring cells Tjklm and Tjklim' and

 (2.7b) Wjk (V'lV)jk h -gjklmn

 on the edge Sjk between two boundary vertices of a boundary cell Tjkim. Obviously,
 we have

 Lemma 2.1. For 2 < p < oc, there exists some generic positive constant c, inde-
 pendent of h, such that for any ui E U,

 (2.8) Iu1i u,p < ch2/p-1 1u,2

 The same inequalities hold when the space U is replaced by V and W.

 In addition, we also have the following discrete analog of the standard interpo-

 lation inequalities in Sobolev spaces.

 Lemma 2.2. For 1 < p < oo, for any e > 0, there exists a positive constant
 c = c(e) independent of h such that for any il E U,

 <,E6ll,p 7Vtl2,12 + C(C)IIUl2,12

 By identifying u7 with a continuous piecewise linear function uh on triangular
 meshes obtained by dividing each primal cell along a diagonal, the above inequality

 follows from the continuous version due to the equivalence of norms between iUl p
 and IIUhiiLP(Q).

 3. GAUGE INVARIANT DIFFERENCE APPROXIMATIONS

 We present a systematic derivation of the gauge invariant difference approxima-
 tions for the time dependent Ginzburg-Landau equations in this section.

 3.1. The discrete variables. The discrete representations of the primary vari-

 ables as well as physically interesting variables are defined at the following loca-
 tions:

 order parameter _b - vertices {xj},
 electric potential 1 -_ vertices {x;},

 (3.1) magnetic potential A' midpoints of edges {Xjk},
 induced magnetic field c5 center of cells {Xjkim},

 electric current J midpoints of edges {Xjk}

 Let A c W be a vector field defined at the midpoint of each edge. The circulation
 in a typical cell Tjklm with four vertices X3,Xk, XI, xm is given by

 (3.2) Cjklm := (ajk + akl + aim + amj)/h.

 The above can be rewritten in matrix terms:

 (3.3) CA =c,

 where C may be viewed as an approximation of the operator curl. We approximate

 the divergence on each dual cell T; containing the vertex xj by

 (3.4) dj : 1 >~I ajkh k
 3T k --j
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 970 QIANG DU

 where the sum Ekj stands for the sum over all neighboring vertices Xk of xj. We
 again have the matrix form

 (3.5) DA = d

 where D may be viewed as an approximation of the operator div.
 A few technical results concerning the discrete approximations of div and curl

 are needed for later discussions. First, direct calculation gives a discrete analog of
 the integration by part formula and the orthogonality of vector fields:

 Lemma 3.1. Let ui, v7 E W, D, C be matrices defined as in (3.3),(3.5), and V, V'
 defined as in (2.6), (2.7a-b). Then

 (3.6) (Du,f)u=-(u, Vf )w V f E U,

 (3.7) (u,) = uVf7 Vg -E V,

 (3.8) CVf = O VfEU and DV'g= V EV.

 Next, the following inequality can be verified using similar arguments given in

 [22], [23] (the discrete operators are the dual versions of those defined in [22], [23];
 see also [12] for similar results for unstructured triangular grids):

 Lemma 3.2. Let 2 < p < oc. For small h, there exists a positive constant c
 independent of h such that

 (3.9) LudII,p < c (IIDiZIlu,2 + IICiiIlv,2), V i E W.
 3.2. The approximation of the energy functional. The crucial point in main-
 taining the gauge invariance in the approximation is to approximate the integral of

 'V,0 + AV)j2 on a primal cell r1234 by

 h2
 (3.10) 2 0?212 + ?a2312 + ?a3412 + l12

 where

 (3.11) C ~jk i exp(-iwajkh) -j
 K ~~h

 and exp(-iIajkh) is often called a link variable [1], [14]. Coupling (3.2), (3.11) with
 the use of a one-point integration rule for the integral of (1 - lJ 12)2/4 over each
 dual cell 7j, we arrive at the following discrete formulation of the GL functional:

 gh(7 A) = -1 z k | kexp(-iIajkkh) - 2
 2 K ~~~h

 (3 12) ,jk

 + E (1- _I'j 2) + 2 (ajk ?akl + alm + amj - Hjklmh)2
 j jklm

 where Hjklm is the component of H e V which is equal to the value of H at the

 center of the cell Tjklm with vertices xj, Xk, Xl, Xm labeled counterclockwise.
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 GAUGE INVARIANT APPROXIMATIONS 971

 3.3. The semi-discrete gauge invariant approximation. For all vertices {x;}

 in , let Dj = 4j + -[- a (Xi, t). The semi-discrete gauge invariant difference approx-
 imation is defined by

 (3.13a) /+ ZKjj0j = - af (f,A) at f7~aloi
 at all the vertices {Xj} in E, and

 (3.13b) I (a3k - + 1 agh(,A) ~at?hh hh aajk
 at the midpoints {Xjk} of all edges in E. The initial conditions are defined as

 (3.13c) oi(O) = V)o(xj) or Xi (?) = 4, o j go(x)dx

 at all vertices and the components of A(O) form the solution of

 (3.13d) CA(O) = c*(O) E V

 and

 (3.13e) DA(O) =-O e U

 where the components of c(O) are defined by

 (3.13f) Cjklm(O) = j curl AOdT,

 in all the cells and C and D are matrices defined as in (3.3) and (3.5).

 Given a discrete vector field f(t) E U for t in a given time interval [0, T], the
 above scheme is invariant under any discrete gauge transformation Tf defined by
 Tf (Q, A, @) = ((, Q, 6) where the components of (, Q, 0) are given by

 (3 =p fe- iKfj qjk = ajk + fk - j and E)j = 4)j - a) fj h and

 at the vertices or edges.

 3.4. The fully-discrete gauge invariant approximation. There are various
 discrete-in-time schemes, for example, the explicit forward Euler methods have been
 used in many simulations. Here, we present a modified backward Euler method.
 Such a method has unconditional stability.

 For simplicity, we take a uniform time step size A\t on a given time interval

 [0, T], although the theory remains valid even if variable step size is allowed. Let
 4n = 4V + bn' where 4)' = - (xj, nAt) for all vertices xj at all time steps. The
 gauge invariant backward Euler scheme is given by

 (3.14a) n -3 -1exp(-iI'iAt)) _ 1 a n)
 At j (

 ajk _ajk_k 1 aGh (3.14b) + - (1/,nI An)
 At hhhk &aJ4k
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 972 QIANG DU

 for n = 1, 2, ..., N -T/Z\t. The initial conditions are given by

 (3.14c) b = (xj) or 0 jj | o(x)dx

 and the components a.% of A0 form the solution of

 (3.14d) CA? = e(O) E V

 (3.14e) DAO = 0 E U

 where the components of c(0) are defined by (3.13f) and C, D are defined as in (3.3)
 and (3.5). Other interpolation techniques for the order parameter may also be used

 if we only have 0b0 E V1(Q).
 First of all, let us state the discrete gauge invariance property of the above

 scheme. Given f E [RfN]N, with f 0 for any j. Let f (,0,AI ) = (IQ 8)
 where the components of ((, Q, 0) satisfy

 fn _ fn-1 n fn

 (:j =bjeii = J and q7jk = ajk f
 at vertices or edges. Then, we have

 Proposition 3.4. For fn E RfNO for 0 < n < N with f 0o = O for any j. If (tb, A, b)

 is a solution of (3.14a-b) with initial conditions (3.14c-e), then so is hf (V, A,l ).
 When performing numerical -simulations, the gauge of the solution should be

 fixed. The above properties, however, make it flexible in selecting a suitable gauge

 for the convenience of a particular simulation. There are various choices to fix the

 gauge (see [5] for the continuous analog). A few possibilities are discussed below
 along with results on the existence of discrete solutions.

 3.5. The London gauge. The London gauge is obtained by letting the vector

 magnetic potential be divergence free, i.e.,

 (3.15) E aJn hfl 0
 k--j

 or DAn =. In the London gauge, three variables (s, A, I) need to be solved
 and the computational cost is often increased. There is no existing numerical

 simulation of the time dependent models using the London gauge (even though the
 correspondilng Coulomb gauge is widely used in steady state simulations). We thus
 ignore further discussions of the London gauge.

 3.6. The zero electric potential gauge. For the zero electric potential gauge,

 we require bn = 0, i.e., (Dn = O for all n, j. This can be achieved by letting

 ffn _ fn-_

 At N

 with f? 0. Note that this implies n =a(Xj).
 In actual implementation, the solution in the zero electric potential gauge at the

 n-th time step may be obtained by solving for the global minimizer of the following
 variational problem:

 (3.16) min gi ) (
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 GAUGE INVARIANT APPROXIMATIONS 973

 where

 (3-17) ghn(j3 A) gh(t/3v A) + - 2 + At2

 for any (b,A) E U x W and be defined by

 (i = 07n - exp (- (Dn A\t)

 It is obvious that gh.n is continuous and bounded below by

 II1 1l- (1 u2 + 71 IA-An- II w,2v
 At - +At A

 so the minimum is achieved in a bounded set for given h and At. Consequently, we
 have

 Lemma 3.5. Given h, At and ( b-',A--')I there exists at least one solution to
 the gauge invariant difference approximation in the zero electric potential gauge.

 Naturally, the above result implies the existence of solutions to the fully-discrete
 scheme under any gauge choice by applying proper gauge transformations.

 3.7. The Lorentz coupled potential gauge. The Lorentz coupled potential
 gauge is the gauge for which the discrete vector potential and the discrete electric

 potential are to be related by bn = ADAn, or

 (3.18) j n- A n
 KTilI \k kj}

 where A > 0 is a given constant. This includes both-?3.5 (A = oo) and ?3.6 (A = 0).
 Using similar ideas as in [5] for the continuous case (see also [13] for related

 discussion), the construction of the gauge transformation hT is given by

 ( )n AkZ fk n .n 1 n
 (3.19) Eh j + A ZaJkhJk

 and f? = O. The case A = 1 is often referred to as the Lorentz gauge. We take this
 gauge as an -example for our theoretical studies given in later sections.

 Using gauge transformations, any solution of the gauge invariant approximation
 (3.14) can be transformed into a solution in the Lorentz gauge, so it follows from
 Lemma 3.5 that

 Lemma 3.6. Given h, At and (,bn-1, An-1), there exists at least one solution to
 the gauge invariant difference approximation in the Lorentz gauge.

 4. ANALYSIS OF GAUGE INVARIANT DIFFERENCE APPROXIMATIONS

 We analyze the convergence of the fully-discrete approximation in the Lorentz
 gauge. The key steps include the derivation of an a priori pointwise estimate and an
 energy estimate. For an interesting comparison with their continuous counterparts
 as well as their finite element versions, one may consult, for example, [5], [6]. Here,
 we focus on the modifications necessitated by the discrete approximations. The
 stability estimates are obtained by comparing solutions with perturbations which
 in turn imply the convergence and error estimates.
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 974 QIANG DU

 4.1. A pointwise bound on the fully-discrete solution. The time dependent

 GL equations presented in (2.1a-f) are non-dimensionalized; it can be shown [5] that

 the magnitude of the order parameter, 1[1i, remains between 0 and 1 with-+ = 0
 representing the normal state and [ I1b= 1 representing an ideal superconducting

 state. Here, we prove the discrete maximum principle which is presented as a

 property of the gauge invariant scheme (3.14a-e), that is, it holds for solutions in
 any given gauge.

 Lemma 4.1. Let (IbTh, A') satisfy (3.h14a-e). If 1i?0(x)I < 1 for almost all x E Q,
 we have I 1,0' I I < 1 for all n > 0.

 Proof. By the construction of the initial approximation, we have 11kb0ju,co < 1.

 Assume that = H4'lv,OO for some n,j and 1> while 14,kH1v,oo < 1 for all
 k < n. Notice that (3.14a) has the following form

 fb7 - 1 k exp(-iri7At) -

 3 At -3 (1- ,nb1.) Vb7 (4.1) 1 h' /'I/n exp(-irnan h)_ V)n + U~~~k (k'k3 )

 Multiplying the above equation by A\t+jb* and rearranging terms, we get

 (1 + At(k|2 - 1) + SE j n = tb7l * exp(-is33ib t)

 /\t Ehjk OknOn* exp(_iKajn h)

 kT j Vh J

 Note that for any j,

 (4.2) 1 hk 4
 I 'T j I h h2

 By the assumption on [i7J , we get

 ( 1? 4t) lfpn|2< At hl'k

 (4-3) h71Kkb j Z-+ K

 Remark. T above r ? + 4,t el ? 12 Thus, 1,0n < kOjn-b l < 1. This contradiction proves the lemma. C]
 Rernark. The above result insures that the magnitude square of the discrete order
 parameter has proper physical interpretation as the density of superconducting
 carriers. The same estimate holds for solutions of (3.14a-e) in any given gauge as
 well as the semi-discrete approximation presented in (3.13a-b).

 4.2. A priori estimates for approximation in the Lorentz gauge. Given the

 solution (Sn- A,An- 1) of the n - 1 time step and setting n =-DATn in (3.14a)-
 (3.14b), the difference approximation in the Lorentz gauge at the n-th time step is

This content downloaded from 129.234.0.202 on Tue, 12 Mar 2024 10:32:25 +00:00
All use subject to https://about.jstor.org/terms



 GAUGE INVARIANT APPROXIMATIONS 975

 given by

 jb7 - ~b~i exp(-i,((Dn, + d'n)At)

 (4.4a) ~~~At =(-b~)b
 (4.4a) h n?1 (4exp(-i?an h) _,O)

 ( )(a;k an-i) - (V n)jk ( k

 ?-I { hif* bexp(ia,kh)}

 where

 (4.5) dn =DAn, and n=CAn

 and V, V' are defined as in (2.6) and (2.7a-b). The initial conditions are defined
 in (3.14c-e) as before.

 The existence of solutions of (4.4a-b) follows from Lemma 3.6. We show later
 that the solution is unique if we take small step size A\t. Similar to [7], [12], in
 order to study the properties of the above scheme, we define the following modified
 free energy functional:

 (4.6) dFh nh=Ah)=g5(4 ,Ah)+ 2 ( ajkhakV

 Then, one may rewrite (4.4a-b) as

 (4.7a) +7- //Liexp(-i,i(+dfl)At)) j1k

 and

 n n-i

 (4.7b) '\ t hh[An)-

 To establish the energy bounds, we have

 Lemma 4.2. There exists a positive constant c, which depends on the given pa-
 rameters n, q and the final time T, but is independent of h and At, such that for
 small At,

 ( Fhbn vAn) + Z + { Ilm - ,-lu2 + Am - Am 1i,2}
 (4.8) m=i A

 < cFh(#, A?) + cIJ12

 Proof. We consider

 Fhn(An An) - yhQ4n-1 n- 1)

 (, n An)(n _ n-l) + (n An) (An n-1)
 4OAn
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 976 QIANG DU

 term by term. First of all, by Lemma 3.1, we have

 - + H2CA _- H2- 2IDA ,2 - IICA1 - H ,2)
 + (Vdn, A - An - ( - A - A-

 -2 ( AD( - A jU2 + IIC(Ah A -2

 Next, since (1 + Z2)2 is a convex function of z, simple calculation gives

 21 [(1I- -Ojnl2)2 _ (1 _ -n-I - f{(1 _ -Onl2)1n(n* _ n-l*)I]

 1<T I IOjgn _ n-112

 The term that needs some calculation is

 hhlk F n/exp(-ina kh) _/fj12 I_ n1exp(-icaQ nh) O- 121
 jk jkl bj

 2 hJk {( exp(-isaJkh) - b7) ( h2*

 + hj k R{i,V)*,V)7nexp (i,4;aAkh) (a^ k- aJk) }

 jk

 By expanding terms, we get

 2 E hs2 [j k 1| jk (V 2{n xtia )jn* pjlfn-l* lfn-
 h K[~/n2 +h/~ ~-~~

 jk

 + 2~R{+kb1 extiakh+ + 2Ri{'V4n extiaJk)j }- 2|k|2

 - ~{'V4 p(ifaJh+ + 2lR{Ib7jbl/j-*} + 2~R{'+b exp(i n kh>)b*}
 - kL4 22R{+j/ exp(iNaJnk h)+kV-l* } + 2R{bnfbn1* }

 ? 2~R{ifiIL*nb fj epianh(Xk- aj1)h}]

 Combining like terms, we have

 I= 1 k [2 {+ 1 12 7 - 12Rn* (exp(-ina wnh) -exp (in rwnk h) ) }

 jk

 + 2n-I {i'nab exp(ih;an2kh)s;(ak jni- a1 )h}

 o exp -i n ) exp(-is ,a .k h)-(q/jn I_b fl ex1 )n h2 I
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 GAUGE INVARIANT APPROXIMATIONS 977

 Rearranging the terms, we get

 jk L=h

 ( -exp(-in(an -agn-l)h)) }

 {b71b71 (- exp(-irc(a k )- -nh)-i (a n a k)h) }

 -~{ ( 'V{ exp (-isia k h) - ~b) <n* s(an k- aXJ) }

 1 (I( -) j jexp(-ijakk h)jk
 2 h -)k3

 where we have used {i +*}= 0 and ={+ 01^-*-.- It follows that

 E hhjk [|/+n exp(-i,Ma~j1h) - |IiiaJk -a 1 + ,62|an -a)

 + |k exp(eixaikah) -j KJa_a1]

 z hhj 2 + 2 h

 jk

 + ~t (lfk xp i1j h-j ? /4nexp(-irKajkh) -/7jn2'\

 ? _ _ ep_ in n h e (-ii a 1 ) - ~ __ _ _ __ _ _

 Therefore,

 ,FhQi,n ,An) _ yh(g;n-l,2in-l) + 1- {Ikbn _ /-lH2u2 +iA ?lAH-nllw,2}

 4<~ (Fth (4,/n,An )?+Fh (4, n-l,An-l )) ? (1 l ) ljA A -AI -l 12

 + k( - k n-1 ;n-1 - n-a )

 where Q,n-l is given by

 n _ expt(-iK(k + d )t)

 Since

 2-t 1 ne inaIu2 < cnJ1 2dt ?V)nex ian/\1

 < clJj2dt ? hQlbn, Wn)z\t,
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 we have for At small enough,

 (1- -- 2 )rh(n,7n) (1+ _)_ n An

 + 1 ln _ V)n- 1l An _A-n-I 112W C|jj2At - ?2At {Hiv - 'VH 2 ? 7+ All 2}?cJAt
 By the discrete Gronwall's inequality, we may conclude that there exists a positive

 constant c, independent of h and At such that for any 1 < n < N = T//t,

 (4.10) FhQ,2bn An) < cFhQVP ) + cIJI2

 Summing the equation (4.9) over n and using (4.10), we get the estimate (4.8). CL

 To complete the estimate, we note that with (3.14c-e) and Lemma 3.2, it is easy
 to show that for h small,

 Fh(/O, AO) < C

 for some positive constant c, depending only on the initial data and the given
 parameters i, and H. So, we have

 Corollary 4.3. Given the initial data and the parameters s, 71,J, H and T, for
 2 < p < oo, there exists a generic positive constant c, independent of h, At and n,
 such that for h, At small, we have

 NAT( _# 2 2.

 E At A + At <C
 n=1 ~ 't u,2 At w,2

 (4.11) IICAAn 11v,2 + JIDAn 11u,2 < C

 jjAnjjW,p < C

 IIVn 11w,2 < C,

 11n11ju,oo < 1.

 Proof. The first inequality in (4.11) follows from (4.8). Since

 Fh `n,An) ? C

 the second inequality in (4.11) follows from the definition of yh* In turn, the
 estimate in the p norm for An follows from Lemma 3.2.

 Note that

 Izhh' n 2exp(-inaAnh)-,Ojn - 2
 jk j

 < 2FhQV7 An) + 211A wl,2,

 we get the bound on |IV+IOw,2.
 Finally, the last inequality in (4.11) follows from Lemma 4.1.

 Remark. The corresponding version of (4.8) in the zero electric potential gauge
 (see ?3.6 and replace Fh by gh) is much easier to be verified due to (3.16)-(3.17).
 Nevertheless, it would take more work to establish the estimates similar to (4.11)
 in that gauge.
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 GAUGE INVARIANT APPROXIMATIONS 979

 4.3. The comparison of solutions. FoI a pair of vectors (fn, j) E U x W, we
 consider the pair (('P,Q2n) E U x W that satisfies

 - -P;1 exp(-ihz ; +a, )t (1_,nll)pn

 (4.12a) + i, h>k ((P exp(-ijakh - + f7 X
 A/($,t jt ) Vnik(l

 (4.12b) n7n) n

 +r + R {ih'pk exp(iKajkh)} +% k f

 where jn = D2tn and ,d = C2Vt.
 Assume that (fi, 2t7) satisfies the same estimates given in Corollary 4.3 for

 (/fl, An) (with the same generic constant c that is independent of ZAt and h). Let

 + -ril K2' h j-
 k n n =,-1_g

 (4.12b)~e: At_.
 I n dn ~ n + ~k~3 expiK,'k)+g

 We then have

 Theorem 4.4. Gven the initial data (sam, esi) and (gi,v) and the parameters
 nc, nJ, H,wT, there exists a generic constant c > 0, independent of h,A t and ni,
 such that for h, LAt small and 1 <i n N I = T t,we have

 + (71 + c/\t)II|e IIw,2 + tlflu2+ /\tii llw 2
 Proof. Subtracting the equations for the corresponding variables, we get

 n n-i~~~~n

 %En _ OEn - % exp(-i, njn + d)n )t)

 z~t

 =ton-i / ep flAi\; Xt ( exp(-i60jZit) -exp(-isd>n/t)'\

 + ( 1 - - 2 2 ) n ( d1 - on

 (4.14a) + 1 E h_ t (2 <exp(-iICatkh) 7% )

 143 ( exp (-i eCkh1) 1ni2e n k ) tj exp(-icajkhj)
 IT;I 2 1e +,2 e tllf -,2 w i

 irn- 1 hXp ;kie7sO nP(i/hakh t-)
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 980 QIANG DU

 and

 At (ejk- e'k) = (V8T)jk -(V T

 + I R {ian*pj exp(inajkh) + io n* ac exp(iaj7kh)}

 (4.14b) + 1 {/)*_ / ,) (exp(inajnkh) - exp(ia7nk h)) }

 +-J {kia* (aj exp(inajkh) -ka) }- k.

 Multiplying (4.14a) by J-r jlao*, taking the real part, and summing over j, we gel

 (4.15)

 ll&nilHU,2 -ll H1uv2 2 Z I7jl la-' - a'1 exp(-i(n + dn)dt)|2
 2At + 3 i j

 3

 1 e exp(isnZAt) -exp(indjnAt))}
 E |r'|R l fn-l~~~an'* exp(-iecn . t) \)|

 + S I j? {[(i I )0n- (1 _ I #On12) pn]3n*}
 j

 + hjk n{ ( exp(-inankh) -ajn) }
 j k-,j

 + z z hx { (exp(-iien4kh)- 1 + isenk )

 3hh,k 3 {i fj kn exp(expjkh) jk
 j k-

 J J

 =:Ill +112 +11I3 +114 +115s+11I5 +116 +117 .

 We note that

 I1 z z hik { (aknexp(-isfainkh) -ayn )n* }

 hhjk |kn exp(-inajnkh)-j jn2
 3-E ,g,2| h h

 jkk-

 Moreover,

 _ hhJk |ah exp(-i neakh) _-an 12
 K2 h 3h

 jk  hh' a epinanh ~

 < k jk ak | +32hh- kc a7k|a
 jk jk _ + 8&~~~~H~~4HA kaH'lk j
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 GAUGE INVARIANT APPROXIMATIONS 981

 Using the uniform estimate on IIA11,w,4 in Corollary 4.3 and the inequality in
 Lemma 2.2 with some appropriate c, we get

 8 11T au,4 IA Tw,4 - 20 a Vnllw,2 a+ C uaTh,2

 for some generic constant c. Thus,

 Ii? E hh'k a4nexp(-ina nkh)-aJ a 12
 < 2 K2 ~~~h 20~ Va H14,2 +Ca u,2.
 jk

 Concerning other terms in the equation (4.15), we have

 2 n-1 a sJ { '-ar* exp(-i,/An.At)

 (exp(-iniZAt) - exp(-isdjnAt)) }

 <S Toj |3 4 |7 ? H u 2 + HaI u,2

 The estimate -< 1 is used in the above. Next, using monotonicity, we have

 113 S ~E {[(i _ I ljn12)ojn _ (1 _ Ipn12)pn]an*} < 0
 j

 Noting that lac'l < 2 and lWnl < 1 we have

 II4 55 f | (exP 2)S? x(-iseKh) 1) }i~1h\:ALi2~
 < S hh~ejk en 2 &?jn < 4H1eHn ,2.

 3 kk j

 Also,

 h5 zz hhejk |inenkho _exp( i_ajkh)ie - *}

 142 h' (Pk expiaj`haexp(-isaikh)-oj|

 ?5 n52 CeJ~ I YJn h1

 .i k-k

 hhn - A)12gl nn exp(-najnh) j

 Using the uniform bound on jFh((p, 2(a) and the inequalities in Lemmas 2.2 and

 3.2, we get for some generic constant c(> 0,

 115 k h 3

 6s2 | |V?tn || v,2 + 4H |I I u,2 + 4V -||Hn||v,2 + C | |an | | 2.

 In addition, we have

 j kj*

 TIIh : n i2 1+ n n - IV2 lt l,n 2 + ll6b l 1.1_n12uCl,n2
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 and

 117 ' j j{finn*} ?2 !&u 2 + 2fn u2

 By the above estimates, (4.15) implies

 2t a u ,2 - 11-1112) + 32 |V | a w,2
 1 hh'k an exp(-ina nkh)-caY 2

 (4.16) 2ty ek ak hi 3
 jk

 (4 .172 + - 4on 1_1 2 2 1 ?: C I,2 + 4 w,2 + 211U2 + 4IY IIv2 + 211 .

 Meanwhile, multiplying eYkhhjk to the equation (4.14b) and summing over all

 edges Sjk and using summation by parts (see Lemma 3.1), we get

 2At (H wH, 2 - 1e* 11w,2 + He - eH 2) + 11U, + IIYnIIv,2

 - h : k = { ia n*n exp (iKajnk h) enk + iso,n*jn exp(inaJk h) enk}

 jk

 (4.17)K+S hhk { el- )exp(i/an h) - exp(i/ n}h)

 (41) + z hhk {i(afnlOn_ * (Y ,x(ix,h)- j)eki ahh~kge n
 jk h~~~k 3jkj

 jk

 jk jk~ ~

 1 6 11 , 1112 + j111 4u,2 + 4IVY Hi,2 +CH&2Hl,2

 by the derivation given earlier. Using the pointwise estimates k/{7l ? 1, 'fkl K 1,
 No t 2 and t k ? 2, we get

 "'2 E R h ian* - apn* ajn) (exP(iKaknh)- exp(inank h) e)

 jkLI )

 ? 5Hleni2 ,2.

 Also,

 1113 : hh> R {i(nn*) (i7 exp(ijjkh kh) - n) ek }|

 ? 2ll nll2 + 5 hh?k aiexp(-iKajkh)-agj2

 i k-i~~j
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 GAUGE INVARIANT APPROXIMATIONS 983

 Clearly,

 Z:Ehhjk |g7kejk ? < le ,ll2 + w,2
 jk

 Thus, (4.17) implies

 (11 (|| 2 11w 2-n||- 11|2W2 + |1 -n _ e n-1 112 2)+3 llb l2 +3 1ll2 e L,2 - eflW1,2 + e~f n HW2) + 1 ni 2+ - VYHiv,2

 (4.18) < 61le- |2 + _||9 Iw 2 + 6 2IIVdi||w,2 + C|| ||u,2

 + EZ hhk an exp(-inankh)-aan 2
 jk

 Finally, combining (4.16) with (4.18), we have

 (4.19) At- k2 a Ku2) + At (Ie |,2 - He H 2)

 ? Cfl&1 u,2 +CHeThw,2 + 1if lLu,2 + ll3 11w,2
 for some constant c, independent of A\t and h. Hence,

 (1 -_Ctt)11&n Il2 + (_Ct)lln11 w2

 CA(1 ? t) 1i1 11 ,2 + (7q + CAt)I|1n 1 2 2 + itiifn2 + Atll12
 We see that (4.13) is valid for small h and A\t. D

 It follows from the discrete Gronwall's inequality that

 Corollary 4.5. Let the initial data (fb?, A?) and (p0, %1?) and the parameters K, 7,
 J, H, T be given. For h, A\t small, there exists some constant c > 0, independent of
 h, A\t and n, such that for any 1 < n < N = T/zAt, we have

 (4.20)
 n

 II6njI2 2 + 11enII2w 2 I<C a(-0112U 11-0112 2 + C 1\t n11 lu2 +13i 2 ) IIH,2 +IeIw,2 ? C( II UI,2 + IIOI,2) +cU (fi,2 + IrI1K2)

 Remark. One may view the estimate (4.20) as a stability property for the fully-
 discrete schemes in the Lorentz gauge. The result is independent of the regularity
 estimates on the solution of the continuous system (2.1a-f).

 4.4. Uniqueness of the discrete solution. The comparison estimates obtained
 previously have a number of consequences. First of all, we have the uniqueness of

 the fully discrete solution in the Lorentz gauge.

 The6rem 4.6. For small A\t and h, the scheme (4.4a-b) has a unique solution.

 Proof. Let f n = , = . Assume that for some n > 1, -n-1 = 1n - and
 = An-. If both (, n,QV) and ( bTh,At) are solutions of the fully-discrete

 scheme, then we have from Theorem 4.4 that

 -l?nn pnl 2 + -n _Ai2w
 II_m - iu,2 + IA _ -n11w,2 < 0

 Thus, V)n = (pn and An = 9JLn. Thus, the solution is unique. El

 The above result indicates that the Lorentz gauge is indeed a valid gauge choice

 in the sense that with this gauge choice, there exists one and only one solution to
 the discrete approximation scheme.
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 4.5. Error estimate. In the following, we assume that the exact solution ('b, A) of
 (2.1a-f) in the Lorentz gauge is sufficiently regular. At tn = nA\t, let the components
 of f n be defined by

 (4.21a) (,0 : )(xj, tn)

 and the components of 2JJn be defined by

 (4.21b) ajk jA((1 - S)X + SXk, tn) * tjk ds

 Using a priori estimates for the time dependent GL equations (2.1a-f) similar to
 the ones in [5], we can easily verify that, by properly choosing (or redefining) the

 generic constant c, (,Fn,%2n) satisfies the same estimates given in Corollary 4.3 as
 its gauge invariant approximation. Let Jn = D2n and A = C2n. Then, direct
 calculation shows that

 -7j _ n- l exp(-i,(,,nJ + D j ) At)

 (4 . 22a) I > h j S ( (9n exp(-iPajnkh) _n ) +fn

 (4.22b) 2 ( At ) = (VD )jk - (V'(Fn - H))jk

 + + R {i kn 'p exp(inajkh) } + gjkt

 for some fn and !T which satisfy
 n

 (4.23) n \t (HP H2u2 + <gH1,2) ? c(L\t2 + h4) , for n = 1, 2, ..., N,

 where c is a positive constant depending only on the appropriate norms of the exact

 solution (,b, A). One may consult [5], [13], [24] for the regularity estimates for the
 weak and strong solutions of the time dependent GL equations in various gauges.

 Using a similar error estimate as those given in [22], [23], we have

 (4.24) 111P - A? jjw,2 < ch2JjAoj|2,QX
 for the initial data Ao E H2(Q). By Corollary 4.5, we get from (4.23) and (4.24)
 that

 Theorem 4.7. There exists a positive constant c which depends on the norms of
 the exact solution (,b, A) and the given parameters ,, 77, J, H and the final time T,
 but is independent of h and A\t, such that if (,b, A) is sufficiently smooth and A\t
 and h are sufficiently small, then for any 1 < n < N, we have

 (4.25) _ |Vn - 91ju,2 + IA _- nj w,2 < c(Z\t + h2)

 where (Fn, An) is defined from (b, A) by (4.21a-b).

 When variable time step is used, similar estimates may be derived. Error es-
 timates may also be obtained for approximations in other gauges as well as the
 semi-discrete gauge invariant approximation.
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 GAUGE INVARIANT APPROXIMATIONS 985

 5. CONCLUSION

 The discrete gauge invariant difference approximation is a popular method used

 by physicists and mathematicians to study the vortex phenomena in supercon-
 ductors. The above discussion provides a rigorous mathematical theory for this

 method. The techniques presented here may be applied to analyze other types

 of fully-discrete schemes, such as the explicit time-stepping scheme used in [17]
 and other more efficient implementation of the nonlinear coupling. By generaliz-
 ing the ideas given here and [12], one may also develop and analyze a covolume
 approximation for the time dependent GL equations on general triangular grids.
 The numerical implementation of the discrete gauge invariant approximation has

 already been used in simulations of three dimensional problems (e.g. [3], [16]). One
 may also try to generalize the theory to such cases. In addition, the pointwise

 estimate on the order parameter / proved here has not been shown for the finite
 element approximation of the time dependent Ginzburg-Landau equations. The
 above discussion may provide some hints on how to modify the standard finite ele-

 ment methods by using proper coupling of the nonlinear terms and the quadrature
 formula to insure the validity of the pointwise bound on the finite element approx-
 imation of the order parameter /. Further studies of the above issues are under
 way.
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