
Analysis of Raw V-I data to extract I_C

Centre for Materials Physics

Superconductivity Group

www.durham.ac.uk/cmp

Presentation by

Prof. Damian Hampshire and Dr. Mark Raine

<u>Critical current measurements on short</u> <u>samples in high magnetic fields</u>

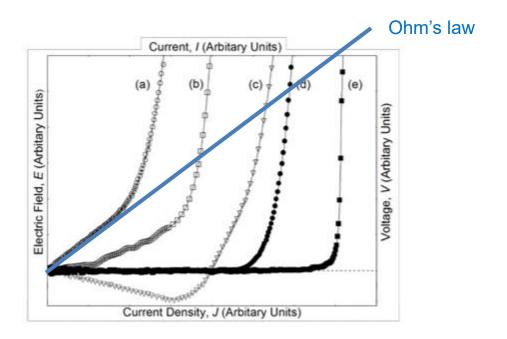
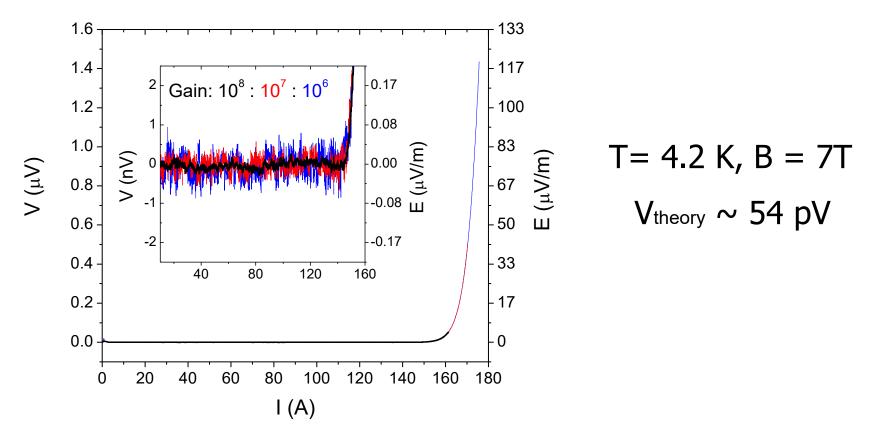



Fig 1: Five *E-I* traces found when measuring different superconductrors. Trace (a) shows resistive behaviour from origin because the sample measured was short. Alternatively, such artefacts can appear if there are thermal voltages across the sample, or across the amplifier terminals. We can remove this resistive behaviour by simply subtracting the line obeying Ohm's law shown in blue. This will give us the required *E-I* trace with zero resistance.

M J Raine, S A Keys and D. P. Hampshire <u>Characterisation of the Transport Critical Current Density for Conductor Applications</u> Handbook of Superconductivity. Publisher: Taylor and Francis (2021)

Critical current density in high magnetic fields

After the baseline subtraction, the data should show the text-book behaviour shown above. State of the art measurements are about a factor of 3 above the fundamental theoretical limit given from taking account of the quantisation of charge and calculating the Johnson noise.

Prapaiwan (Bew). Sunwong, J. S. Higgins, and D. P. Hampshire – <u>Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet – Review of Scientific Instruments 85 065111 (2014)</u>

Extracting critical current (I_c) or critical current density (J_c) values.

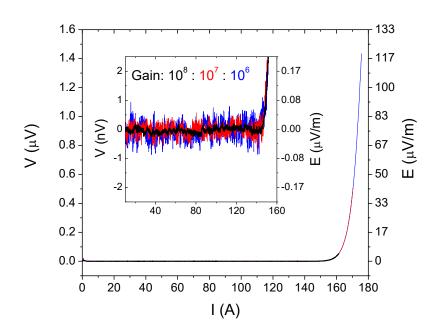


Fig 1: E - I characteristics generated for an HTS tape measured at 4.2 K and 7 T. The E - I data can be parameterised using the power law with E_C fixed at 100 μV . m^{-1} , and I_C and n as free parameters

M J Raine, S A Keys and D. P. Hampshire Characterisation of the Transport Critical Current Density for Conductor Applications Handbook of Superconductivity. Publisher: Taylor and Francis (2021)

The data can be described by:

$$E = E_C \left(\frac{I}{I_c}\right)^n$$

where E_C is the small (and arbitrary) electric field used to define the critical current (I_c). It is usually taken to be 100 $\mu V.m^{-1}$. The index of transition, n, is a fitting parameter that characterises the 'sharpness of the transition' and I_c gives how much supercurrent the tape can carry at the electric field criterion.