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Flux flow resistivity in type I1 superconductors 
11. Theoretical discussion 

W. F. VINEN and A. C. WARREN 
Department of Physics, University of Birmingham 
MS. recezved 5th January 1967, zn revisedform 13th March 1967 

Abstract. Existing theories of flux flow resistivity in type I1 superconductors are 
reviewed, and an extension of the work of Nomeres and Vinen is introduced, in 
whch the motion of a flux hne is related to certain relaxation times governing the 
rate of change of the superconducting order parameter. The various experimental 
results that we now have on flux line motion are compared with this extended theory. 

1. Introduction 
The theory of the motion of flux lines in type I1 superconductors has been discussed 

by Tinkham (1964), by van Vijfeijken and Niessen (1965 a, b), by Bardeen and Stephen 
(1965, to be referred to as BS) and by Noziires and Vinen (1966, to be referred to as NV). 
I n  the present paper we discuss the validity of these theories and introduce an extension 
of the work of NV, which we try to apply to both alloys and pure metals. We then use 
this extension as the basis for a discussion of the significance of the various experimental 
results that we now have on flux flow resistivity, including those presented in the preceding 
paper (Vinen and Warren 1967, to be referred to as I), and of the extent to which we 
understand them. I t  may be stated at this point that, although they are in a sense quite 
successful, the theories discussed in the present paper are very crude and therefore have 
severe limitations. As we shall see, we believe that they are useful, not so much perhaps 
in accounting directly for the experimental results, but rather in drawing attention to some 
of the basic physical problems involved in the construction of a proper theory. 

Let us suppose that a single rectilinear flux line, carrying one quantum of flux, 
4 = hc/2e, lies along the x axis, and that there is an applied flow of superfluid past the 
core of the vortex with a velocity, measured on the z axis in the absence of the vortex, 
equal to vsl and directed along the x axis. This applied flow might be due, for example, to 
an arrangement of other vortices. Throughout the present paper we shall assume that the 
radius of the vortex core IS small compared with the penetration depth ( K  $ l), SO that 
the applied flow may be regarded as uniform over the core region. We shall also assume 
that the situation is two-dimensional, so that vsl does not vary with z. We shall measure 
all velocities in the lattice frame of reference. Under the influence of the velocity ~ , 1 ,  the 
flux line will move with velocity v, in the xy plane, and we conveniently write the relation- 
ship between these two velocities in the general form (assumed to be linear) 

vsl x 9 -pvL x 9 -y$V, = 0. (1-1) 

The theory of flux line motion is required to predict the values of the constants p and 7. 
Provided that shearing effects can be ignored (see I), the flux flow resistivity and Hall 

angle in the mixed state are related to /3 and y by the relations 

Y B  
'=",e 

13 t an& = - 
Y 

where B is the mean magnetic induction in the sample and N,  is the number of super- 
conducting electrons per unit volume well away from the core of the vortex. These 
relations depend on the fact that the measured electric field in a type 11 superconductor is 
equal to ( -  l/c)vL x B (see e.g. NV, appendix A), and they also depend on the assumption 
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that the cores of the flux lines are not too close together (H not too close to Elc2), It should 
be  emphasized that we are considering in the present paper situations in which there is no 
pinning of the flux lines. 

2. Review of earlier theories of flux line motion 
A detailed rigorous theory of flux line motion clearly represents a very difficult prob- 

lem, since the motion involves a situation where the order parameter is varying rapidly in 
space and time, where there is current flow through this region of varying order parameter, 
and where relationships between various quantities involved (currents, fields, order 
parameter) must be non-local. It is therefore of interest to ask first whether there exist 
any general results that must apply to flux line motion, independently of the detailed 
structure of the core. 

One such general result has been proposed recently by NV. This  is that at least in a 
pure superconductor at T = 0 flux lines are subject to the classical Magnus effect, in the 
sense that their motion is governed by the formula 

Arse 
f t - (v , , -v , )x+ = 0 

C 

\there f is the total force on the electrons in the neighbourhood of the core due to inter- 
action with the lattice. Equation (2.1) was derived by considering the balance of forces 
on a volume of the electron fluid within which the flux line core is wholly contained and 
by assuming that the only forces acting are the force f, electromagnetic forces, and forces 
due to fluid pressure. Evaluation of the force f requires, of course, a detailed theory. 

Such detailed theories have so far been based only on models of the core of the flux 
line. T h e  models are based on the assumption that the superfluid density a t  any point in 
the vortex depends only on the local value of the superfluid velocity. For the isolated 
vortex, without imposed currents, we then expect that, owing to depairing of the electrons, 
the superfluid density will vanish at a certain radius from the centre of the flux line core, 
and we denote this radius by (. Inside this radius the material is entirely normal. Outside 
this ‘normal core’ the superfluid density may be taken either to be constant (with a dis- 
continuity at the core boundary) or, more realistically, to rise rapidly and gradually to its 
equilibrium value (the ‘transition region’). These models are clearly unrealistic, but they 
may nevertheless contain the essential physics of the problem. 

T h e  most ambitious detailed theory to be proposed so far is that of BS, which takes 
into account a transition region of finite extent; i t  applies only to clean superconductors 
( I  >> 5) at T = 0.t (1 is the electron mean free path in the normal state.) It is found that, 
essentially owing to Bernoulli effects, the motion of a flux line in the presence of the velocity 
vS1 is accompanied by an electric field which is large in the region of the normal core; 
this field gives rise to a normal current through the core and the resulting forces and 
dissipation determine the precise motion of the line for the given vS1. T h e  theory predicts 
that 

P .B 
p = -, 

HC, 
tan eH = w c ( H o ) ~ .  

pn is the normal-state resistivity, w,(H,) is the cyclotron frequency in the field in the core 
of the flux line, and T is the normal-state electron relaxation time. 

This theory has been criticized by NV, mainly because of a questionable assumption 
that within the region of the core there is local equilibrium of the electrons with the lattice, 
even though the electron mean free path is large compared with the scale of this region. 
T o  this point of difficulty, we should like to add two others. 

(1) T h e  BS theory does not satisfy equation (2.1) but  instead the equation 

NSe f - -vv ,x+  = 0.  
C 

t A similar, but less complete, th‘eory has been proposed independently by Van Vijfeijken and 
Niessen (1965 a ,  b). 
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The origin of this discrepancy is as follows. When a flux line moves, there is a flow of 
electrons through the surface of the normal core. Since the electrons in the superconducting 
state must approach the core and leave it with angular momentum appropriate to the 
vortex motion, this flow must involve the generation in the neighbourhood of the core 
surface of a net force, which is easily seen to be given by 

n here - Nsevsc represents the supercurrent (assumed uniform) flowing into the normal 
core (see W ,  equation (13)) .  I t  is reasonable to assume that this force acts eventually on 
the lattice (either directly or through the normal electronsj and hence that it contributes 
to f. According to BS, however, part of the force (2.3),  viz. (Nse/2c)vsc x 9, does not in 
fact act in this way; we believe that to this extent their analysis must probably be wrong, 
although it is possible that the error leaves the predictions of the model unaltered. It 
should be noted that the extra force does indeed make up  the difference between (2 .2)  
and (2.1), since, in the BS model, the supercurrent entering the core is equal to twice the 
transport current N p S l  (see BS, equation (3 .18));  we remember that there is also a force 
on the lattice equal to ( -  NSe/2c)vL x 9 due to an electric field acting on the normal core 
electrons (see appendix 1, equation (A2)). 

(11) T h e  flow pattern in the transition region of the BS model is such that the super- 
current and normal current are separately divergence-free, except on the surface of the 
normal core, and, as a result, the whole of the momentum loss ( 2  3 )  occurs on this surface. 
We feel that this situation is physically unreasonable. I t  is not clear whether this difficulty 
arises from an inherent deficiency in the model, or whether some of the equations used 
by BS are unrealistic. We certainly believe that equation ( 3  12) of BS IS questionable, 
because, as we show in appendix 2 ,  it appears to contain the assumptzon that the two 
currents are separately divergence-free. We note also that in the BS model the net current 
flouing at any point is simply the sum of the current due to the isolated vortex and the 
uniform transport current. Since, as we have seen, the supercurrent flowing into the core 
equals twice the transport current, this condition on the net current can be satisfied only 
by having a cozinterJEou1 of the superfluid and the normal fluid in the parts of the transition 
region where the core boundary is largely normal to the transport current. We feel that this 
counterflow is also physically unreasonable. We believe indeed that a realistic treatment 
of the transition region is much more difficult than that given by BS. 

I n  view of difficulties with the BS model, NV proposed a different model, again applic- 
able only to a pure metal at T = 0. KO attempt was made to treat a transition region, and 
the superfluid density was taken as changing discontinuously at the boundary of the normal 
core. If this model is treated with the BS assumption of local equilibrium with the lattice, 
and with the requirement that the normal core current equals the transport current, then 
it is necessary to assume, as was shown by XV, that during motion of the line there is a 
non-zero contact potential at the core boundary (see appendix 1). This contact potential 
gives rise to a force on the electrons, which must be balanced by a force from the lattice; 
a corresponding force exists in the BS model (when modified to be consistent with 
equation (2 3 ) ) ,  but it appears in this model as the contribution to (2.3) that arises from that 
part of the supercurrent entering the normal core which is in excess of the transport 
current. 

NV suggested that it might be more realistic to assume not that there is local equilibrium 
with the lattice, but rather that there is no contact potential (it may be seen from the com- 
ments that we have just made that, in a more realistic model with a transition region of 
finite extent, this assumption of zero contact potential is probably equivalent to an assump- 
tion of no counterflow in the transition region). Unfortunately, it turns out that the 
problem is not then completely determined; it is still necessary to obtain a relationship 
betmTeen vsl and v,,, where v,, is the drift velocity of the electrons in the normal core. 
It is difficult to determine this relationship, and NV simply assumed, on the basis of a 
vague energy argument, that vsl = v,,. This is clearly unsatisfactory. 

I n  the next section we shall present an extension of the work of NV, in which this 
unsatisfactory feature is circumvented. T h e  relationship between vS1 and v,, is still not 
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determined a priori, but it is expressed in terms of certain relaxation times that can be 
associated with the motion of the flux line. We determine the values of these times by 
comparison with the experimental results, and then try to understand the significance 
of these values. We also try to extend the treatment to dirty systems. 

Before the detailed BS theory was published, Tinkham (1964) proposed that the motion 
of a flux line might be determined in part by dissipation due to a relaxation process 
associated directly with the fact that the order parameter near the core of the flux lines 
is forced to change with time, and he was led to suggest that for a dirty superconductor 
a relaxation time, equal to t0/vF, was associated with this process (to is the Pippard 
coherence length in the pure superconductor and t i F  is the Fermi velocity). We shall see 
that the present analysis involves a relaxation process of the same type, and that it leads 
to the same relaxation time. 

3. Extension of the analysis of NV 
We use the model described in 6 of NV, viz. one in which the flux line has a normal 

core of radius E ,  with superfluid of uniform density outside the core. We consider only 
the case T = 0. However, we do not assume that v,, = vsl ; instead, as we have already 
explained, we shall derive a relationship between these quantities in terms of certain 
relaxation times, the values of which we shall determine by comparison with experiment, 
We continue to assume that there is no contact potential a t  the core boundary.? We 
carry out our analysis first for clean materials (I 9 to) and then for dirty materials ( I  < to). 
3.1. Clean materials 

We first calculate the electric field acting on the normal core electrons, and hence obtain 
a relationship between the velocities v,, v,, and vsl. To do this we make use of a Bernoulli 
equation applicable in the superfluid outside the core of the flux line; this equation takes 
the form 

p-eV+&m(v,-vL)2 = constant (3.1) 
as was shown in NV (equation (9)). e is the magnitude of the electronic charge, p is the 
chemical potential per electron in the superfluid (excluding contributions from the electro- 
static potential and from the kinetic energy of flow), v, is the total superfluid velocity at 
any point, and V is an electrostatic potential, defined so that the total electric field at any 
point is given by 

1 
E = - -v,xH-grad V .  (3 4 

C 

In  the neighbourhood of a flux line the total superfluid velocity is given by (NV, 4 2) 

V S W  = v,o(r) + VSl + Vb(+ (3 *3) 
vso(r) is the circular velocity due to the flux line itself, and vb(r) is a dipolar backflow, 
needed for charge conservation, given by 

vb(r) = grad (vsl - v,,) . r . (3 *4) 1 7 
Using (3.3) and (3.4), we may express vs(r) in terms of its components in cylindrical polar 
coordinates: 

The notation is explained in the figure. From (3.5) we can calculate for any point on the 
t More precisely we assume that the transport current and the consequent motion of the flux line 

lead to no change in any contact potential at the core boundary. 
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Sketch defining the angles 8, 5 ,  X, #. 

core boundary (Y = E )  the value of (vS-vL)', which we need to obtain the electric field 
in the core, and the value of v,', which we shall need later. To  first order in the velocities 
vsl, Vnc, V L  ( ~ ~ 1 ,  uno VL < &/2mE), we find that 

75 
(v, - VL)' = wso2([) - - {2vsl sin 0 + vnC sin( 5 - 0) + vL sin($ - e ) }  

m-t 
and 

(Y  = f )  ( 3  - 6 4  

+i 

mE 
ns2 = vso2(t) - - {2v,, sin 0 +  vnc sin(( - e)} (Y  = 0. (3.6b) 

The potential V at any point just outside the core of the flux line is now given by 
equations (3.1) and ( 3 . 6 ~ ) .  Let us assume for the moment that p does not depend on 
position. We also assume, as we have explained, that there is no contact potential at the 
core boundary. We see then that the potential Y implies the existence inside the normal 
core of a contribution to the electric field which is uniform and which may be conveniently 
written 

1 
E, = - ( V L  - 2v,,  + vnc) x 42. 2ncp 

The normal core electrons experience three driving forces: that due to the field E,, that 
due to the contribution (- l / c )vL x H to the electric field (equation (3.2)),  and that due to 
the interaction of the electric current in the core and the magnetic field in the core. The 
second and third of these forces may be shown to be small to order t2/iXZ (see NV, 2),  
and we shall neglect them. We find then that the velocity v,, is given by 

er X 
v,, = - -Ec = - - ( v L - Z V , ~ + V , , ) X +  ( 3  4 

m 4 
where 

er4 
2nmc-t~ 

x=- 

This is the required relation between v,,, vsl and vL. If we follow BS and assume that 

then we find that 

( 3  *9)  

(3.10) 
er 

mc 
x = - Hc2 = w , ( H , ~ ) T .  
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BS give good reasons for believing the relation (3.9), but we cannot be sure that it is correct. 
However, provided it is incorrect by less than a factor of 2, our conclusions are not sub- 
stantially altered. 

I n  deriving equation (3 5) we assumed that the chemical potential p does not depend 
on position. W e  recall that a t  T = 0 this assumption implies that the pressure is indepen- 
dent of position. I t  seems likely that this assumption is in fact justified. For  let us suppose 
that we have a free electron gas, and that we make a small local change in its density (the 
total electron density, and the length scale involved in the density change, being comparable 
with those in the present problem); then, as is easily verified, the forces due to the potential 
set up  by the resulting space charge greatly exceed those due to the resulting pressure 
gradient, and we believe that the same result holds for a superconducting electron gas. 
But the assumption may in fact be unnecessary. For we may say that the force acting on 
an electron is in general equal to - ( V p  - eOV) instead of merely - e  V V ,  and a plausible 
generalization of the condition of zero contact potential is that p- el/ be continuous across 
the core boundary T h e  result (3.5) then remains true. But this generalization does 
involve the difficulty that f* may not be locally defined 111 the core region, so we prefer on 
the whole to keep to the assumption that the force on the electrons due to the electric field 
is the only force of its type that acts. 

We again remember that, as electrons move into and out of the core (depairing and 
pairing), momentum (associated with the circulating current in the vortex) must be lost 
and gained; in the present case there will be a corresponding force on the lattice that is 
given by (cf. equation (2.3)) 

(3.11) 

We have now put N ,  = N ,  the total number of conduction electrons per unit volume, as 
is appropriate for a pure superconductor at T = 0. As in NV we assume that the force (3.1 1) 
is transferred ultimately to the lattice, and that this transfer is effected within a distance 
from the core boundary that is small compared with [. By adding together the force (3.11) 
and the electrostatic force -nNe[2E,, acting on the core electrons, we find that the total 
‘frictional’ force acting between the lattice and the electrons in the region of the core is 
equal to the Magnus force (Are/c)(vL - vS1) x 9, in  agreement with the general argument 
of NV?. The  validity of the assumption that the effects of force (3.11) are localized in the 
region of the core boundary is, of course, questionable, especially when 1 $ f, as was 
emphasized in XI7; we shall return t o  this point in  0 5 .  

As yet the motion of the flux line is not completely determined. We still need the 
relation between v,, and vsl, which we now derive. 

Let  us suppose first that we have an isolated vortex, with no superimposed currents. 
T h e  core boundary will be at the points where the magnitude of the superfluid velocity 
is h’2nif.  T h e  superfluid velocity at the core boundary is always tangential to this boundary, 
so that, as we expect, no normal current through the core is required for charge conserva- 
tion. Kow let us suppose that we artificially displace the core boundary, relative to the 
superfluid flow pattern, so that each point on the boundary moves a small constant distance 
D. If we view the superfluid flow pattern from the centre 0 of the displaced core, we now 
see a pattern formed by adding together a vortex centred on 0 and an extra velocity field 
given by 

If we remember that near the core of a flux line v,, is irrotational, we can write 

v2 = ( D .  grad)v,,. (3.12) 

v2 = grad(D . v,,) 

t It should be noted that in NV, 5 6, thls part of the argument was 111 effect inverted the force 
acting on the core electrons was deduced by subtracting the force (3.11) from the total Magnus 
force, the existence of the Magnus force having been previously deduced from a more general 
argument. Our present argument is perhaps therefore very slightly weaker than that in KIT, but 
we have made the change in order to be able to extend the treatment to a dirty system, where, as 
we shall see, the idea of the Magnus force appears not to apply. 
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which in  turn can be written 

vp = -grad(u . r f )  

where the velocity U is given by 

2mt2 
D = - (ux+).  

fi4 (3.13) 

We see that the extra velocity v2 takes the form of a dipolar backflow, and that its existence 
therefore implies a drift velocity through the normal core equal to U (compare with 
equation (3.4) ; we assume that the normal current is spatially uniform). Furthermore, 
the magnitude of the superfluid velocity at the core boundary is no longer equal to fi/2mf; 
as we see from a special case of (3.6b), us2 is changed by an amount equal to 

f i  

m5 
- - U sin(): - 0) 

to first order in  U (x is defined in the figure). 
W e  may generalize this picture by adding to the flow, both inside and outside the core, 

the uniform velocity vsl. T h e  drift velocity in the normal core (v,,) is then equal to 
u+vsl,  while vs2 just outside the core differs from fi2/4n1252 by an amount equal to 

k 

mt  - - {U sin():- 0) + vsl sin e}. 

We see therefore that the relationship between v,, and vsl can be expressed both in terms 
of an effective displacement D of the core boundary and in terms of the magnitude of the 
superfluid velocity just outside the core. This  remains true even when the core is con- 
tinuously moving, provided we think about the instantaneous velocity fields. 

Let us now apply these ideas to the determination of the relation between v,, and vsl 
in the moving flux line. We shall make plausible assumptions about the position taken by 
the core boundary, and these will lead us  to possible relationships between v,, and vS1. 

W e  might first assume that the core boundary appears at points where the magnitude 
of the superfluid velocity relative to the lattice equals the critical value k/Zmf.  We see 
that this leads immediately to the relation U = vsl, i.e. v,, = 2vsl, and to the displacement 
(2mt2/fi4)(vsl x +). W e  shall refer to this situation as one of 'equilibrium in the lattice 
frame'. 

However, in the presence of the superimposed flow and when the flux line is moving, 
we cannot necessarily assume that this particular 'equilibrium' situation does in fact 
obtain. It seems likely that relaxation processes will lead to a further displacement of the 
core boundary : we shall make the reasonable assumption that this displacement contains 
terms that are proportional to the velocities v, and v,,, and so can be written 

Dl = -T~ 'VL+T~' 'V , ,  (3.14) 

where T~' and T ~ "  are undetermined relaxation times. T h e  time T ~ '  is a relaxation time 
governing the rate at which the order parameter at any point returns to its equilibrium 
value, and it is therefore essentially the same as that introduced in connection with the 
same problem by Tinkham. T h e  displacement (3.14) modifies the relation between v,, 
and vsl which now becomes 

(3.15) 

This is one form of the required relationship between v,, and vS1. 
I n  the discussion that we have just presented, we assumed that the equilibrium position 

of the core boundary was determined by the condition that the magnitude of the superfluid 
velocity a t  the  core boundary, relutiz3e to the lattice, be equal to the critical value fi/2mf. 
We must recognize that this assumption may not be justified, especially when 1 B to. 
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It might be the case that the critical superfluid velocity should instead be relative to v,,. 
I n  this case the equilibrium situation corresponds to v,, = vS1, and so to 

We shall denote displacements from this position by D,, with corresponding relaxation 
times 7,’ and 7,”. The correct view can be obtained only from a detailed microscopic 
analysis, which we do not attempt. In terms of D,, we can write 

(3.16) 

which is an alternative form of the relationship between v,, and vS1. 

the flux line has the form (1.1) with 
Combining equations (3.8), (3.14) and (3.15), we find that the equation of motion of 

x(x‘ +x“) x + x ’  
y=-- 

= 2(1 + x x n ) ’  2( 1 + 3%“) 
(3.17) 

where x’ = ( ~ ~ ’ 1 7 ) ~  and x n  = ( ~ ~ ’ ‘ 1 7 ) ~ .  In no sample so far studied (except those of 
Druyvesteyn et al. (1966)) has x exceeded a value equal to about 0.3, and we shall assume 
also that neither x‘ nor x” exceeds this value. To  a fairly good approximation, we may 
then neglect terms quadratic in x, x’, x” in comparison with unity. We find with this 
approximation that the flux flow resistivity p and the Hall angle 8, are given by 

2 B  
p=xi-xlNe 

x(x/ +x”) 

x+x’  
tan8, = 

(3.18) 

(3.19) 

3.2. Dirty materials 
As mentioned in NV, the equation of motion for superfluid flow in dirty materials is 

not yet known with certainty. However, a form for this equation that is at least plausible 
has been suggested recently by Rickayzen (1966), and we shall use this form in the present 
discussion. We shall continue to assume that the superfluid density changes discontinuously 
at the boundary of the normal core and is constant outside the normal core; as pointed out 
by BS, this assumption is likely to be even less good for an alloy than for a pure metal. 

For the case T = 0, to which we shall continue to confine our attention, the form 
suggested by Rickayzen is? 

(3.20) 

The superfluid velocity v, is defined in terms of the phase S of the order parameter by 

(3.21) 
A e 

2m mc 

p is again the chemical potential per electron (excluding the electrostatic potential energy 
and the kinetic energy of flow) ; Ns/N is the effective fraction of superconducting electrons. 
For the very dirty case, I < 6, at T = 0, this fraction is given approximately by 

Ns 1 

V, = - VS+--A; 

(3.22) - 
N = g  

t It should be noted that equation (3.20) is not of the form that one expects for a single fluid 
in classical hydrodynamics, and we cannot therefore any longer expect to be able to discuss vortex 
motion from the point of view of a Magnus effect. 
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where I is the electron mean free path in the normal state, and to is the Pippard coherence 
length in the pure metal. London’s equation remains of the form 

e 
curlv,- -H = 0 (3.23) mc 

the supercurrent being given by J, = -N,ev,. 
We can now repeat the analysis required to obtain the equation of motion of a flux line, 

but with the modified equation of superfluid motion. We first derive the modified Bernoulli 
equation, and then repeat the type of analysis given in $3.1 above. As in NV, we work 
throughout in the lattice frame of reference. 

If variations in magnetic field are due entirely to flux line motion, one of Maxwell’s 
equations takes the form 

(3.24) 

3.1 and in NV) that the electric field may be written in the form (3.2). 

1 aH 1 
curlE = - -- = -(v L .  V)H. 

c at c 

It follows (as in 
We now add to each side of (3.20) the term (v, . v)vs, and so obtain 

av, 
-+(vs. V)V, = ~ ~ ( v , - ~ ~ ) ~ - ( v ~ - v ~ ) x c u r l v ,  
at 

= V( (1- $) 2.2- -v,xcurlv,-  -E. e (3.25) 
m 

We have used the fact that changes of v, in time are due to flux line motion, so that 
av,/?t = - (v, . v)v,. Hence, using equations (3.23) and (3.25), we obtain the Bernoulli 
equation 

(3.26) 

The anJysis of the flux line motion now follows exactly the same pattern as that in 
3 3.1, and we shall simply quote the results. The only point to which we need draw 
attention is that, although the supercurrent is carried effectively by only a fraction N,/N 
of the electrons, the normal current in the core is carried by the whole fraction (there is 
therefore a discontinuity in the normal component of the velocity at the core boundary). 

The  electric field acting on the normal core electrons, analogous to that in equation (3.7), 
is given by (again for v,, v,,, v,, Q fi12mf) 

p-eV+Jm(v,-vL)2-&m 1- - vs2 = constant. ( 3 

(3.27) 

(we again assume for simplicity that p does not depend on position). Equation (3.8) is 
therefore replaced by 

(3.28) 

Again we express the relationship between v,, and vsl in terms of relaxation times T~‘ 
and T ~ ” :  equation (3.15) becomes 

v,, = -- x ( vL--vs,+vnc) 2NS x+. 4 N 

(3.29) 

while we take the form (3.14) to be unchanged, although the actual values of 711 and T ~ ”  

may be different. 
Combining equations (3.28), (3.29) and (3.14), we find that the equation of motion of 

the flux line is still of the form (l.l), but with 

(3.30) 



I n  dirty materials, .Y < 1, and we assume that the same is true for x’ and x”. We may 
therefore neglect terms quadratic in x, x’, x” in comparison with unity. W e  then find the 
following expressions for the flux flow resistivity and Hall angle: 

s, x(x’ + x”) tan8, = - - 
x + (Lvs/Y)x” 

(3.31) 

(3 -32) 

4. Comparison with experiment 

dirty niaterials that (in the notation of I) p* = B*, i.e. 
-4s we have seen, we find from experiment, a t  T = 0, for both pure materials and 

1 B  
x X e  p = - - - *  

Let us assume first that the position of the core boundary is determined on the basis 
of ‘equilibrium in the lattice frame’. It follows from equation (3.15) and (3.31) that we 
must take 

I 

in clean materials ( 4 4  Ti = T 

*v 
= -- T s, in  dirty materials. 

T h e  form (4.3) may be rewritten 
, 50. E o  ti 

(4.3) 

(4.4) 

where vF is the Fermi velocity, h is the superconducting energy gap, and where we have 
made use of equation (3.22). Thus  it appears that, if our analysis is correct, the  relaxation 
time T ~ ‘  has to be taken in  general to be either the electron-lattice relaxation time in the 
normal state, or the reciprocal of the gap frequency, whichever is the larger. This state- 
ment seems physically reasonable. If it is the superfluid velocity relatzee to tlze lattice that 
is involved in depairing, then it is likely that impurity scattering, and hence T, will also 
be Involved; it also seems reasonable that the order parameter cannot change at a rate 
greater than the gap frequency. But a proper microscopic analysis nould be required to 
check these ideas. We note that the relaxation time (4.4) is essentially the same as that 
suggested by Tinkham. 

Alternatively, we may assume that the position of the core boundary is determined on 
the basis of equilibrium in the normal electron frame. We then find that we must take 7,’ 
to be small compared with T in all circumstances. In  the case of a clean material this 
statement appears to be as physically reasonable as (4 2), for, if the  lattice is not involved 
in  depairing, T,,’ might well be determined by the time taken for a normal electron to cross 
the core which is the same as the reciprocal of the gap frequency in a clean material and 
which is much smaller than 7 ;  but the statement appears to be less reasonable for a dirty 
material since T,‘ would then have to be less than the reciprocal of the gap frequency. 
It is interesting to note that, if the position of the core boundary is determined on the basis 
of equilibrium In the lattice frame, then relaxation processes appear to displace it to the 
position corresponding to equilibriuni in the normal electron frame, while, if the position 
of the core boundary is determined on the basis of equilibrium in the normal electron 
frame, then relaxation processes do not displace it appreciably T h u s  the observed resist- 
ivity may actually be zndependent of the particular frame in which equilibrium exists, and 
this observation may turn out to be important in accounting for the fact that Kim’s empirical 
formula is so uidely applicable. 

T h e  time T ~ ”  must be determined from the observed Hall angle 8,. As yet, experimental 
measurement of 8, in a clean material (nlobium) has proved difficult. I n  the conventional 
d.c. measurements of Reed et 01. (1965) the observed 8, was strongly currentdependent, 



Flux $ow resistivity in type I,! superconductors: I,! 4 19 

owing presumably to defects in the sample, and the same appears to be the case in  the 
helicon measurements of Maxfield and Johnson (1966). However, in the very recent 
helicon measurements of Druyvesteyn et al. (1966) the current dependence was not found, 
although it was still present in d.c. measurements on the same samples. If we accept these 
most recent helicon measurements as giving the true Hall angle, we find that for pure 
niobium (with UJ,(H,~)T ranging from about 0.5 to about 1) tan OH N x, and hence that 
either 

Ti” 7 

or 
(4.5) 

rnn N 0 (4.6) 
where we have used the accurate versions of (3.18) and (3.19). Like those for T ~ ’  and T ~ ’ ,  

these results seem physically reasonable. There is, however, some uncertainty about this 
Hall angle, since the value of the resistivity derived from the helicon measurements appears 
not to agree with (4.1). We must also remember that in niobium the value of K is small, so 
that, contrary to our assumptions, the core magnetic field is llkely to contribute appreciably 
to  the Hall angle. 

Satisfactory Hall angle measurements do exist for one particular dirty superconductor, 
namely the alloy NbTa (Staas et al. 1965), for which 115 N 0.79. For fields that are well 
below H,, (to which the present theory is confined), these measurements indicate a value 
of tan OH equal to about 2 . 4 ~ .  This can be accounted for by taking a suitable value of T ~ “ ,  
but it is not clear what meaning can be attached to this value. 

5. Discussion 
We must emphasize that the discussion in the present paper is based on a very crude 

model, which can be analysed with ease only at T = 0 and for K 9 1, and that it depends 
rather critically both on the approximate validity of equation (3.9) and on the absence of 
any contact potential at the core boundary. There is also the difficulty, already mentioned, 
connected with the transfer of the force (3.11) to the lattice. We have assumed that this 
transfer takes place in the immediate neighbourhood of the core boundary. This  is a 
reasonable assumption in the case of the dirty system, where the mean free path of the 
normal core electrons is much less than the core diameter, but it is less reasonable in the 
clean case. Indeed, in the clean case it might well be that we ought to imagine that the 
transfer of the force to the lattice is uniformly distributed over the core region, and that the 
force therefore acts as an extra driving force on the core electrons. We can easily work 
out the consequences of this latter assumption : the analysis is a straightforward modifica- 
tion of that given in $ 3.1. We find that to obtain agreement with experiment we have 
to take T,’ = T~’ ’  = - T .  This is unreasonable. However, if we also modify the relation 
(3.9) by adding a factor of two on the right-hand side, we find that we can obtain agreement 
by taking 7,’ = T ~ ’ ’  = 0, as in $ 4. Thus  the difficulty over the force (3.11) can in a sense 
be avbided, although an ambiguity remains. 

T h e  crude nature of the model that we are using is bound to make one uneasy, as is the 
fact that we have fed into our calculations assumptions which, although plausible, have 
certainly not been properly justified, and the possibility cannot be ruled out that the 
success of the model is fortuitous. The  sceptic may therefore object that the model is of 
little value. I n  one sense we are inclined to agree with this Tiem‘, and to agree therefore 
that we may as yet have little real understanding of the motion of flux Iines in super- 
conductors. However, we also feel that the model may help to  fix attention on the basic 
physical problems that lie behind a real understanding of this motion, and that  it may 
therefore act as a guide in the construction of a proper theory?. But even this feeling may 
may prove too optimistic. For the proper theory may circumvent the kinds of problem 

t After the present paper was written, the authors learned of two interesting attempts to construct 
a proper theory one by Schmid (1966), the other by Kulilc (1966). 
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that arise in the model calculation. The empirical formula of Kim for the flux flow resist- 
ivity is after all such a simple result, and so widely applicable, that it may well be the 
consequence of some very general principle, which is quite independent of the detailed 
processes occurring in the neighbourhood of the core of the flux line. But we have been 
unable to find such a principle. 
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Appendix 1 
We give here a simple derivation of the BS equation of motion for a flux line, based 

on the type of approach used in the present paper. We assume that the superconductor is 
pure, and we continue to assume that the magnetic field in the core of the flux line can be 
neglected. 

According to BS there is in effect a contact potential across the core boundary. This 
potential is a consequence of the assumption that there is local equilibrium of the electrons 
with the lattice, i.e. that the value of the total potential, y - e V + + , 2 ,  in the lattice 
frame just outside the core be equal to the value of p - eV just inside the core. We continue 
to assume for simplicity that p is everywhere the same. Then the value of the contact 
potential is seen to be 
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m 
2e 

A V  = 

where v,, is the total superfluid velocity at the core boundary (assumed sharp). I t  follows 
that the electric field in the core is given by (vL, osl, v,, Q 1) 

instead of by (3.7). Hence we find for the velocity v,, 

v,, = - - v L x 4 .  
d 
X 

Like us, BS allow a displacement of the boundary of the moving core, owing to relaxation, 
but in effect they simply assume that (in our notation) 

Hence, using (3.15) and (A3) we find that 

Therefore, from (A3) and (A4), we find that the values of /3 and y in the equation of 
motion (1.1) are given by 

instead of by (3.17). This is the BS result, in the limit when the magnetic field in the core 
of the flux line can be ignored. 

We note that the total force acting between the normal core electrons and the lattice 
is now equal to ( N e / 2 c ) v L  x +. In order that equation (2.1) can be satisfied, an additional 
force, equal to ( N e / 2 c ) ( v L - 2 v , , )  x +, must be assumed to act between the electrons and 
the lattice at the core boundary. Difficulties associated with this extra force have already 
been mentioned. 

Appendix 2 

has the form 

D, = -TVL.  (A4) 

v n c  = VS1. (AS) 

p = o ,  y = x  (A6) 

In this appendix we attempt to derive equation (3.12) of BS. Essentially this equation 

(A7) 
aJ, 1 
at 

-+-J,  = f 
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where J, and J, are the mass current densities associated with the superfluid and normal 
fluid, and T is the relaxation time for electrons in the normal state; the force f is given by 

f = - V(F(v,)} - NeE (-48) 
where F(v,) is the free energy per unit volume associated with a superfluid velocity v, 
(defined by our (3.21)), N is the number of electrons per unit volume, and E is the total 
electric field. 

We start by assuming that the rate of change of the total mass current is given by 

aJt aJs ,  aJm e e 1 a 
at at at m m 7 ax, 
- =  - + - = - NeE,  - - (J, x H), - - (J, x H), - - Jnl - - (vs,Js7 + vn,Jn7) (A9) 

where the last term is the divergence of the total momentum flux density tensor, and v, is the 
average velocity of the thermal excitations in the electron system. This equation seems 
reasonable except for the relaxation term -J,,/T, where we have assumed, without 
justification, that a single relaxation time is involved, equal to that in the normal state. 
From (A9) we find that 

- +L = - NeE-  - (J, + J,) x H -- Jn-v, div J, - (J, . V)v, -v, div J,- (J, . V)v,. 
at at m 7 

In  practice, the terms in aJ,/at, J , x H ,  (J,. V)v, are small, and we shallneglect them. 
Furthermore, the total current must be divergence-free, and hence 

2J, aJ e 1 

(A101 

aJ, 1 e 
-+-J, = -NeE- -JsxH-(v,-v,)divJ,-(J, .  V)v,. at 7 m 

But we have from BS, equation (2.1), 

W V , )  

av, 
J, = - 

and hence 
V{F(v,)} = (J, . V)v, + J, x curl v, 

('413) 

(-414) 

e 
m 

= (J, . V)V,+- J, x H. 
Therefore 

aJ, 1 
- + - J, = - NeE - V{F(v,)} - (vs - v,) div J, . 

This agrees with equation (A7) only if the supercurrent and normal current are separately 
divergence-free, and we believe therefore that (A7) can be valid only if this condition is 
satisfied (quite apart from the difficulty that the relaxation term is of uncertain validity). 
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