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Flux flow resistivity in type II superconductors
II. Theoretical discussion

W. F. VINEN and A. C. WARREN
Department of Physics, University of Birmingham
MS. recerved 5th January 1967, 1n revised form 13th March 1967

Abstract. Existing theories of flux flow resistivity in type IT superconductors are
reviewed, and an extension of the work of Noziéres and Vinen 1s introduced, n
which the motion of a flux Line 1s related to certan relaxation times governing the
rate of change of the superconducting order parameter. The various experimental
results that we now have on flux Iine motion are compared with this extended theory.

1. Introduction

The theory of the motion of flux lines in type II superconductors has been discussed
by Tinkham (1964), by van Vijfeyken and Niessen (1965 a, b), by Bardeen and Stephen
(1965, to be referred to as BS) and by Noziéres and Vinen (1966, to be referred to as NV).
In the present paper we discuss the validity of these theories and introduce an extension
of the work of NV, which we try to apply to both alloys and pure metals. We then use
this extension as the basis for a discussion of the significance of the various experimental
results that we now have on flux flow resistivity, including those presented in the preceding
paper (Vmen and Warren 1967, to be referred to as I), and of the extent to which we
understand them, It may be stated at this point that, although they are in a sense quite
successful, the theories discussed in the present paper are very crude and therefore have
severe limitations. As we shall see, we believe that they are useful, not so much perhaps
in accounting directly for the experimental results, but rather in drawing attention to some
of the basic physical problems involved in the construction of a proper theory.

Let us suppose that a single rectilinear flux line, carrying one quantum of flux,
é = hc/2e, lies along the % axis, and that there is an applied flow of superfluid past the
core of the vortex with a velocity, measured on the # axis in the absence of the vortex,
equal to v,; and directed along the » axis. This applied flow might be due, for example, to
an arrangement of other vortices. Throughout the present paper we shall assume that the
radius of the vortex core 1s small compared with the penetration depth (x > 1), so that
the applied flow may be regarded as uniform over the core region. We shall also assume
that the situation is two-dimensional, so that v; does not vary with 2. We shall measure
all velocities in the lattice frame of reference. Under the influence of the velocity vq;, the
flux line will move with velocity vy, in the xy plane, and we conveniently write the relation-
ship between these two velocities in the general form (assumed to be linear)

Vi X —fvy X ~yévy, = 0. (1.1)

The theory of flux line motion is required to predict the values of the constants B and y.
Provided that shearing effects can be ignored (see I), the flux flow resistivity and Hall
angle in the mixed state are related to 8 and y by the relations

(1.2)

B
i (1.3)
Y

where B is the mean magnetic induction in the sample and N is the number of super-

conducting electrons per unit volume well away from the core of the vortex. These

relations depend on the fact that the measured electric field in a type IT superconductor is

equal to (—1/c)v, x B (see e.g. NV, appendix A), and they also depend on the assumption
409



410 W. F. Vinen and A C. Warren

that the cores of the flux lines are not too close together (H not too close to H,y). It should
be emphasized that we are considering in the present paper situations in which there 1s no
pinning of the flux lines.

2. Review of earlier theories of flux line motion

A detailed rigorous theory of flux line motion clearly represents a very difficult prob-
lem, since the motion mvolves a situation where the order parameter 1s varying rapidly in
space and time, where there 1s current flow through this region of varying order parameter,
and where relationships between various quantities involved (currents, fields, order
parameter) must be non-local. It is therefore of interest to ask first whether there exist
any general results that must apply to flux line motion, independently of the detailed
structure of the core.

One such general result has been proposed recently by NV. This is that at least in a
pure superconductor at 7' = 0 flux lines are subject to the classical Magnus effect, in the
sense that their motion 1s governed by the formula

N

f+T(Vs1—VL)><¢ =0 (2.1

where f is the total force on the electrons in the neighbourhood of the core due to inter-
action with the lattice. Equation (2.1) was derived by considering the balance of forces
on a volume of the electron fluid within which the flux line core 1s wholly contained and
by assuming that the only forces acting are the force f, electromagnetic forces, and forces
due to fluid pressure. Evaluation of the force f requires, of course, a detailed theory.

Such detailed theories have so far been based only on models of the core of the flux
line. The models are based on the assumption that the superfluid density at any point n
the vortex depends only on the local value of the superfluid velocity. For the isolated
vortex, without imposed currents, we then expect that, owing to depairing of the electrons,
the superfluid density will vanish at a certain radius from the centre of the flux line core,
and we denote this radius by £. Inside this radius the material 1s entirely normal. Outside
this ‘normal core’ the superfluid density may be taken either to be constant (with a dis-
continuity at the core boundary) or, more reahstically, to rise rapidly and gradually to 1ts
equilibrium value (the ‘transition region’). These models are clearly unrealistic, but they
may nevertheless contain the essential physics of the problem.

The most ambitious detailed theory to be proposed so far is that of BS, which takes
into account a transition region of finite extent; 1t applies only to clean superconductors
(> é at T = 0.1 (Iis the electron mean free path in the normal state.) It1s found that,
essentially owing to Bernoull: effects, the motion of a flux line in the presence of the velocity
Vg is accompanied by an electric field which is Jarge in the region of the normal core;
this field gives rise to a normal current through the core and the resulting forces and
dissipation determine the precise motion of the line for the given v;;. The theory predicts
that

B
p = ';; , tan 0y = w (Hy)r.

c2

pn 18 the normal-state resistivity, w.(H,) is the cyclotron frequency in the field in the core
of the flux line, and 7 1s the normal-state electron relaxation time.

This theory has been criticized by NV, mainly because of a questionable assumption
that within the region of the core there 1s local equilibrium of the electrons with the lattice,
even though the electron mean free path 1s large compared with the scale of this region.
To this point of difficulty, we should like to add two others.

(1) The BS theory does not satisfy equation (2.1) but mnstead the equation

N
f- 2 ve =0 (2.2)
c

t A similar, but less complete, theory has been proposed independently by Van Vyfeyken and
Niessen (1965 a, b).
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The orngin of this discrepancy 1s as follows. When a flux line moves, there is a flow of
electrons through the surface of the normal core. Since the electrons in the superconducting
state must approach the core and leave 1t with angular momentum appropriate to the
vortex motion, this flow must involve the generation in the neighbourhood of the core
surface of a net force, which is easily seen to be given by

Ne
2c

where — N.ev, represents the supercurrent (assumed uniform) flowing into the normal
core (see NV, equation (13)). It 1s reasonable to assume that thus force acts eventually on
the lattice (erther directly or through the normal electrons) and hence that 1t contributes
to f. According to BS, however, part of the force (2.3), viz. (N.e/2c)v, X &, does not in
fact act in this way; we believe that to this extent thewr analysis must probably be wrong,
although it 1s possible that the error leaves the predictions of the model unaltered. It
should be noted that the extra force does indeed make up the difference between (2.2)
and (2.1), since, 1n the BS model, the supercurrent entering the core 1s equal to twice the
transport current Nyevy; (see BS, equation (3.18)); we remember that there 1s also a force
on the lattice equal to (—Nge/2¢)v;, x ¢ due to an electric field acting on the normal core
electrons (see appendix 1, equation (AZ2)).

(1) The flow pattern 1n the transition region of the BS model is such that the super-
current and normal current are separately divergence-free, except on the surface of the
normal core, and, as a result, the whole of the momentum loss (2 3) occurs on this surface.
We feel that this situation 1s physically unreasonable. It is not clear whether this difficulty
arises from an inherent defictency in the model, or whether some of the equations used
by BS are unrealistic. We certainly believe that equation (3 12) of BS 1s questionable,
because, as we show in appendix 2, it appears to contain the assumption that the two
currents are separately divergence-free. We note also that in the BS model the net current
flowing at any point 1s simply the sum of the current due to the isolated vortex and the
uniform transport current. Since, as we have seen, the supercurrent flowing into the core
equals twice the transport current, this condition on the ne# current can be satisfied only
by having a counterflow of the superfluid and the normal fluid in the parts of the transition
region where the core boundary 1s largely normal to the transport current. We feel that this
counterflow 1s also physically unreasonable. We believe indeed that a realistic treatment
of the transition region 1s much more difficult than that given by BS.

In view of difficulties with the BS model, NV proposed a different model, again applic-
able only to a pure metal at T = 0. No attempt was made to treat a transition region, and
the superfluid density was taken as changing discontinuously at the boundary of the normal
core. If this model is treated with the BS assumption of local equilibrium with the lattice,
and with the requirement that the normal core current equals the transport current, then
1t 18 necessary to assume, as was shown by NV, that during motion of the line there 1s a
non-zero contact potential at the core boundary (see appendix 1). This contact potential
gives rise to a force on the electrons, which must be balanced by a force from the lattice;
a corresponding force exists in the BS model (when modified to be consistent with
equation (2 3)), but it appears 1n this model as the contribution to (2.3) that arises from that
part of the supercurrent entering the normal core which 1s in excess of the transport
current.

NV suggested that 1t might be more realistic to assume not that there is local equilibrium
with the lattice, but rather that there is no contact potential (1t may be seen from the com-
ments that we have just made that, 1n a more realistic model with a transition region of
finite extent, this assumption of zero contact potential 1s probably equivalent to an assump-
tion of no counterflow in the transition region). Unfortunately, 1t turns out that the
problem is not then completely determined; it 1s still necessary to obtamn a relationship
between v, and v,,, where v, is the drift velocity of the electrons in the normal core.
It is difficult to determmne this relationship, and NV simply assumed, on the basis of 2
vague energy argument, that vy, = v, This is clearly unsatisfactory.

In the next section we shall present an extension of the work of NV, in which this
unsatisfactory feature is circumvented. The relationship between v, and vy is still not

(Ve = VL) X ¢ (2.3)

fmt =
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determined a priors, but it is expressed in terms of certain relaxation times that can be
associated with the motion of the flux line. We determine the values of these times by
comparison with the experimental results, and then try to understand the significance
of these values. We also try to extend the treatment to dirty systems.

Before the detailed BS theory was published, Tinkham (1964) proposed that the motion
of a flux line might be determined in part by dissipation due to a relaxation process
associated directly with the fact that the order parameter near the core of the flux lines
is forced to change with time, and he was led to suggest that for a dirty superconductor
a relaxation time, equal to £y/vy, was associated with this process (¢, is the Pippard
coherence length in the pure superconductor and vy is the Fermi velocity). We shall see
that the present analysis involves a relaxation process of the same type, and that it leads
to the same relaxation time.

3. Extension of the analysis of NV

We use the model described in § 6 of NV, viz. one in which the flux line has a normal
core of radius ¢, with superfluid of uniform density outside the core. We consider only
the case T = 0. However, we do not assume that v,, = v ; instead, as we have already
explained, we shall derive a relationship between these quantities in terms of certain
relaxation times, the values of which we shall determine by comparison with experiment.
We continue to assume that there is no contact potential at the core boundary.f We
carry out our analysis first for clean materials (/ > &;) and then for dirty materials (/ < &,).

3.1. Clean materials

We first calculate the electric field acting on the normal core electrons, and hence obtain
a relationship between the velocities vy, vy, and v;. To do this we make use of a Bernoulli
equation applicable in the superfluid outside the core of the flux line; this equation takes
the form

w—eV +3Im(vg—vp)? = constant (3.1)
as was shown in NV (equation (9)). e is the magnitude of the electronic charge, u is the
chemical potential per electron in the superfluid (excluding contributions from the electro-
static potential and from the kinetic energy of flow), v, is the total superfluid velocity at

any point, and V is an electrostatic potential, defined so that the total electric field at any
point is given by

1
E=—--vyxH-grad V. (3.2)
¢

In the neighbourhood of a flux line the total superfluid velocity is given by (NV, §2)
V(1) = Vso(T) + V1 + Vo(r)- (3.3)

v,o(t) is the circular velocity due to the flux line itself, and v,(r) is a dipolar backflow,
needed for charge conservation, given by

Vy(r) = grad{(vsl ~Vpg) . T g} (3.4)

Using (3.3) and (3.4), we may express v (r) in terms of its components in cylindrical polar
coordinates:

2
Ugp = —— ~Ugy SIN O — f_ {vs1 8in 0 + v, sin({ —0)}
2mr r? <
; (3.3)
Ugy = Tgy COS O — - {vs1 €08 8~ vy, cos({ — )}
¥

The notation is explained in the figure. From (3.5) we can calculate for any point on the

+ More precisely we assume that the transport current and the consequent motion of the flux line
lead to no change 1n any contact potential at the core boundary.
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v

Sketch defining the angles 8, ¢, x, ¢.

core boundary (r = £) the value of (v;—~wv;)?, which we need to obtain the electric field
in the core, and the value of v,2, which we shall need later. To first order in the velocities
Vsir Voo Vi, (Us1y Vngy U € #[2m€), we find that

(Vs —VL)? = 0,%(€) —- ;hg {2051 sin O+ vy sin({—0) + o, sin(y—6)  (r = §) (3.6a)
and

252 = vo4(€) - % {205, sin 84 vy, sin({ —0)} (r = &). (3.60)

The potential ¥ at any point just outside the core of the flux line is now given by
equations (3.1) and (3.6a). Let us assume for the moment that u does not depend on
position. We also assume, as we have explained, that there is no contact potential at the
core boundary. We see then that the potential I implies the existence inside the normal
core of a contribution to the electric field which is uniform and which may be conveniently
written

c = Q(VL_ZVSI’F"M) X . (3‘7)

The normal core electrons experience three driving forces: that due to the field E,, that
due to the contribution (—1/c)v; x H to the electric field (equation (3.2)), and that due to
the interaction of the electric current in the core and the magnetic field in the core. The
second and third of these forces may be shown to be small to order £2/A2 (see NV, § 2),
and we shall neglect them. We find then that the velocity v, is given by

Vne = = e_TEc = _aﬁ(vb_zvsl +Va0) X (38)
m ¢
where
et
-y
This is the required relation between vy, v,; and v;. If we follow BS and assume that
fic
2 _ 39
&= i (3.9)
then we find that
e
# = Hy = w(Hy)r. (3.10)

me
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BS give good reasons for believing the relation (3.9), but we cannot be sure that 1t is correct.
However, provided it 1s incorrect by less than a factor of 2, our conclusions are not sub-
stantially altered.

In dersving equation (3 8) we assumed that the chemical potential u does not depend
on position. We recall that at T = 0 this assumption imphes that the pressure 1s indepen-
dent of position. It seems likely that this assumption 1s 1n fact justified. For let us suppose
that we have a free electron gas, and that we make a small local change in its density (the
total electron density, and the length scale involved 1n the density change, being comparable
with those in the present problem); then, as is easily verified, the forces due to the potential
set up by the resulting space charge greatly exceed those due to the resulting pressure
gradient, and we believe that the same result holds for a superconducting electron gas.
But the assumption may in fact be unnecessary. For we may say that the force acting on
an electron is in general equal to —(Vu—eVV) nstead of merely —e V¥, and a plausible
generalization of the condition of zero contact potential 1s that u~— el be continuous across
the core boundary The result (3.8) then remains true. But this generalization does
involve the difficulty that 4 may not be locally defined in the core region, so we prefer on
the whole to keep to the assumption that the force on the electrons due to the electric field
1s the only force of its type that acts.

We again remember that, as electrons move into and out of the core (depairing and
pairing), momentum (associated with the circulating current in the vortex) must be lost
and gained; in the present case there will be a corresponding force on the lattice that 1s
given by (cf. equation (2.3))

47\76
£t = +—é;(vm—vL)x¢. (3.11)

We have now put Ny = N, the total number of conduction electrons per unit volume, as
1s appropriate for a pure superconductor at 7 = 0. Asin NV we assume that the force (3.11)
1s transferred ultimately to the lattice, and that this transfer 1s effected within a distance
from the core boundary that is small compared with £. By adding together the force (3.11)
and the electrostatic force —7NeéZE,, acting on the core electrons, we find that the total
“frictional’ force acting between the lattice and the electrons in the region of the core 18
equal to the Magnus force (Nefc)(vy—vg;) x &, in agreement with the general argument
of NVt. The validity of the assumption that the effects of force (3.11) are localized in the
region of the core boundary is, of course, questionable, especially when [ > £, as was
emphasized in NV; we shall return to this pomnt in § 5,

As yet the motion of the flux line 1s not completely determined. We still need the
relation between v, and v, which we now derive.

Let us suppose first that we have an isolated vortex, with no superimposed currents.
The core boundary will be at the points where the magnitude of the superfluid velocity
is 2/2m¢. The superfluid velocity at the core boundary is always tangential to this boundary,
so that, as we expect, no normal current through the core is required for charge conserva-
tion. Now let us suppose that we artificially displace the core boundary, relative to the
superfluid flow pattern, so that each point on the boundary moves a small constant distance
D. If we view the superfluid flow pattern from the centre 0 of the displaced core, we now
see a pattern formed by adding together a vortex centred on 0 and an extra velocity field
given by

v, = (D . grad)vg,. (3.12)

If we remember that near the core of a flux line v, is irrotational, we can write
v, = grad(D . vy)

+ It should be noted that in NV, § 6, this part of the argument was i effect inverted the force
acting on the core electrons was deduced by subtracting the force (3.11) from the total Magnus
force, the existence of the Magnus force having been previously deduced from a more general
argument. Our present argument 1s perhaps therefore very slightly weaker than that in NV, but
we have made the change 1n order to be able to extend the treatment to a dirty system, where, as
we shall see, the 1dea of the Magnus force appears not to apply.
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which in turn can be written

2
vy, = —grad(u . r§—2)

¥
where the velocity u is given by

p -2, 3.13
= x ). .

e ) (3.13)
We see that the extra velocity v, takes the form of a dipolar backflow, and that its existence
therefore implies a drift velocity through the normal core equal to u (compare with
equation (3.4); we assume that the normal current 1s spatially uniform). Furthermore,
the magnitude of the superfluid velocity at the core boundary is no longer equal to #/2m¢;
as we see from a special case of (3.65), v,2 is changed by an amount equal to

oo p
- Zgusm(x— )

to first order in u (y is defined in the figure).

We may generalize this picture by adding to the flow, both inside and outside the core,
the uniform velocity v,;. The dnft velocity in the normal core (vy,) 1s then equal to
u+ v, while ¢,2 just outside the core differs from #2/4m?¢? by an amount equal to

A
— — {usin(y —0) + v4y sin 6},
mé

We see therefore that the relationship between v, and v, can be expressed both in terms
of an effective displacement D of the core boundary and 1n terms of the magnitude of the
superfluid velocity just outside the core. This remains true even when the core is con-
tinuously moving, provided we think about the instantaneous velocity fields.

Let us now apply these ideas to the determination of the relation between v, and vy,
in the moving flux line. We shall make plausible assumptions about the position taken by
the core boundary, and these will lead us to possible relationships between v, and v;.

We might first assume that the core boundary appears at points where the magnitude
of the superfluid velocity relative to the lattice equals the critical value %2m¢. We see
that this leads immediately to the relation u = vy, 1.€. vy, = 2V, and to the displacement
(2mé2[Tid)(ve; x ). We shall refer to this situation as one of ‘equilibrium in the lattice
frame’.

However, in the presence of the superimposed flow and when the flux line is moving,
we cannot necessarily assume that this particular ‘equilibrium’ situation does in fact
obtamn, It seems likely that relaxation processes will lead to a further displacement of the
core boundary: we shall make the reasonable assumption that this displacement contains
terms that are proportional to the velocities vy, and vy, and so can be written

D = —7/vp+7"Vy (3.14)

where 7, and 7," are undetermined relaxation times. The time 7, is a relaxation time
governing the rate at which the order parameter at any point returns to its equilibrium
value, and 1t is therefore essentially the same as that introduced 1n connection with the
same problem by Tinkham. The displacement (3.14) modifies the relation between vy,
and v,; which now becomes
X -
Vnc—2V51= _E@DIXCP‘: —q—S:Dlxd:. (313)
This is one form of the required relationship between vy and vg;.

In the discussion that we have just presented, we assumed that the equilibrium position
of the core boundary was determined by the condition that the magnitude of the superfluid
velocity at the core boundary, relative to the lattice, be equal to the critical value #2mé.
We must recognize that this assumption may not be justified, especially when /> £



416 W.F. Vinen and A. C. Warren

It might be the case that the critical superfluid velocity should instead be relative to v,
In this case the equilibrium situation corresponds to v, = vy, and so to

r
D = (— E) Vo X .

We shall denote displacements from this position by Dy, with corresponding relaxation

times 7," and 7,". The correct view can be obtained only from a detailed microscopic

analysis, which we do not attempt. In terms of D, we can write

X
Ve = Vs1 = ";anq’ (316)

which is an alternative form of the relationship between v, and v;.
Combining equations (3.8), (3.14) and (3.15), we find that the equation of motion of
the flux line has the form (1.1) with

x(x'+x") o xta

2T +ax’y 7T 214
where &' = (v//7)x and " = (7,"/7)x. In no sample so far studied (except those of
Druyvesteyn et al. (1966)) has x exceeded a value equal to about 0-3, and we shall assume
also that neither &’ nor x” exceeds this value. To a fairly good approximation, we may

then neglect terms quadratic in x, %', x” in comparison with unity. We find with this
approximation that the flux flow resistivity p and the Hall angle 8y are given by

8= (3.17)

2 B

- had 3.18

vl (3.18)
/+ "

tan By = M (3.19)
X+x

3.2. Dirty materials

As mentioned in NV, the equation of motion for superfluid flow in dirty materials is
not yet known with certainty. However, a form for this equation that is at least plausible
has been suggested recently by Rickayzen (1966), and we shall use this form in the present
discussion. We shall continue to assume that the superfluid density changes discontinuously
at the boundary of the normal core and is constant outside the normal core; as pointed out
by BS, this assumption 1s likely to be even less good for an alloy than for a pure metal.

For the case T' = 0, to which we shall continue to confine our attention, the form
suggested by Rickayzen ist

v, p INg N e
RLISUR v R - —E. 3.20
o V( 2N ) m (3:20)
The superfluid velocity v, is defined in terms of the phase .S of the order parameter by
#
V= — VS+--A; (3.21)
2m me

p is again the chemical potential per electron (excluding the electrostatic potential energy
and the kinetic energy of flow); N,/N is the effective fraction of superconducting electrons.
For the very dirty case, [ € ¢, at T = 0, this fraction is given approximately by
N, {
L (3.22)
N &
+ It should be noted that equation (3.20) 1s not of the form that one expects for a single fluid
in classical hydrodynamics, and we cannot therefore any longer expect to be able to discuss vortex
motion from the point of view of a Magnus effect.
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where / is the electron mean free path in the normal state, and £, is the Pippard coherence
length in the pure metal. London’s equation remains of the form

curl v,— —H = 0 (3.23)
me
the supercurrent being given by J; = — Neev,.

We can now repeat the analysis required to obtain the equation of motion of a flux line,
but with the modified equation of superfluid motion. We first derive the modified Bernoulli
equation, and then repeat the type of analysis given in § 3.1 above. As in NV, we work
throughout in the lattice frame of reference.

If variations in magnetic field are due entirely to flux line motion, one of Maxwell’s
equations takes the form

1E LA 1(v V)H 3.24
cur PRl . (3.24)
It follows (as in § 3.1 and in NV) that the electric field may be written in the form (3.2).
We now add to each side of (3.20) the term (v, . V)v,, and so obtain
ov

__a._ti + (Vs . VIV = V(v — V)2 — (v~ V) x curl v,

Ny
= V{%(l— —) vk — i} —v,x curl v~ —E. (3.25)
N m m

We have used the fact that changes of v, in time are due to flux line motion, so that
ovs/tt = —(vy,. V)vs. Hence, using equations (3.23) and (3.25), we obtain the Bernoulli
equation

Ny
p—eV+%m(vs—vL)2—%m(1 - 7\7_) vy = constant. (3.26)

The anulysis of the flux line motion now follows exactly the same pattern as that in
§3.1, and we shall simply quote the results. The only point to which we need draw
attention is that, although the supercurrent is carried effectively by only a fraction N,/N
of the electrons, the normal current in the core is carried by the whole fraction (there is
therefore a discontinuity in the normal component of the velocity at the core boundary).

The electric field acting on the normal core electrons, analogous to that in equation (3.7),
is given by (again for vy, vy, Vo < #/2mf)

1 2N,
(we again assume for simplicity that u does not depend on position). Equation (3.8) is
therefore replaced by
x 2N,
Voe = - ;(VL_ ‘ﬁ Vsl"f'vnc) X . (328)
Again we express the relationship between v, and v in terms of relaxation times 7’
and ,": equation (3.15) becomes

N x
— V=2V = — —Dyx 3.29
Ns ne 1 d’f 1 ¢ ( )
while we take the form (3.14) to be unchanged, although the actual values of =" and =,
may be different. . )
Combining equations (3.28), (3.29) and (3.14), we find that the equation of motion of
the flux line is still of the form (1.1), but with
w(x'+x") N {x+(N,/N)x'}

B= 2+ (NJNw'y 7 N, 21+ (Ny/N)as'}

(3.30)
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In dirty materials, ¥ < 1, and we assume that the same is true for 4" and &". We may
therefore neglect terms quadratic in &, &', x” 1n comparison with unity. We then find the
following expressions for the flux flow resistivity and Hall angle:

2 B

e (3.31)
s+ (NJN)w Ne

tan By = s S EE) (3.32)

N x+ (NN

4. Comparison with experiment
As we have seen, we find from experiment, at T' = 0, for both pure materials and
dirty materials that (in the notation of I) p* = B¥, 1e.
1B
P= X Ne '
Let us assume first that the position of the core boundary is determined on the basis

of ‘equilibrium in the lattice frame’. It follows from equation (3.18) and (3.31) that we
must take

(4.1)

’

=T n clean materials 4.2)

N
=T in dirty materials. #.3)

The form (4.3) may be rewritten
7 = e = = (4.4)

where 2y is the Ferm: velocity, A is the superconducting energy gap, and where we have
made use of equation (3.22). Thus it appears that, if our analysts 1s correct, the relaxation
time 7," has to be taken in general to be either the electron-lattice relaxation time in the
normal state, or the reciprocal of the gap frequency, whichever is the larger. This state-
ment seems physically reasonable. If it is the superfluid veloaity relative to the lattice that
is involved in depairing, then it is hikely that impurity scattering, and hence 7, will also
be mvolved; 1t also seems reasonable that the order parameter cannot change at a rate
greater than the gap frequency. But a proper microscopic analysis would be required to
check these 1deas. We note that the relaxation time (4.4) 1s essentially the same as that
suggested by Tinkham.

Alternatively, we may assume that the position of the core boundary is determined on
the basis of equilibrium 1n the normal electron frame. We then find that we must take =,
to be small compared with = in all circumstances. In the case of a clean material this
statement appears to be as physically reasonable as (4 2), for, if the lattice is not involved
in depairing, 7, might well be determined by the time taken for a normal electron to cross
the core which 15 the same as the reciprocal of the gap frequency in a clean material and
which 18 much smaller than ~; but the statement appears to be less reasonable for a durty
material since r,” would then have to be less than the reciprocal of the gap frequency.
It 1s interesting to note that, 1if the position of the core boundary 1s determined on the basis
of equilibrium 1n the lattice frame, then relaxation processes appear to displace 1t to the
position corresponding to equilibrium in the normal electron frame, while, 1f the position
of the core boundary 1s determined on the basis of equilibrium in the normal electron
frame, then relaxation processes do not displace 1t appreciably Thus the observed resist-
ity may actually be independent of the particular frame i which equilibrium exists, and
this observation may turn out to be important in accounting for the fact that Kim’s empurical
formula 1s so widely applicable.

The time ~,” must be determined from the observed Hall angle 8. As yet, experimental
measurement of 6y m a clean material (niobium) has proved difficult. In the conventional
d.c. measurements of Reed ez al. (1965) the observed 8y was strongly current-dependent,
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owing presumably to defects in the sample, and the same appears to be the case in the
helicon measurements of Maxfield and Johnson (1966). However, in the very recent
helicon measurements of Druyvesteyn et al. (1966) the current dependence was not found,
although it was still present in d.c. measurements on the same samples. If we accept these
most recent helicon measurements as giving the true Hall angle, we find that for pure
niobtum (with w (H,)7 ranging from about 0-5 to about 1) tan 6y ~ x, and hence that
etther

7~ (4.5)
or
T >0 (4.6)

where we have used the accurate versions of (3.18) and (3.19). Like those for 7" and =",
these results seem physically reasonable. There is, however, some uncertainty about this
Hall angle, since the value of the resistivity derived from the helicon measurements appears
not to agree with (4.1). We must also remember that in niobium the value of « is small, so
that, contrary to our assumptions, the core magnetic field is likely to contribute appreciably
to the Hall angle,

Satisfactory Hall angle measurements do exist for one particular dirty superconductor,
namely the alloy NbTa (Staas ez al. 1965), for which [/£ ~ 0-79. For fields that are well
below H, (to which the present theory is confined), these measurements indicate a value
of tan 6 equal to about 2-4x. This can be accounted for by taking a suitable value of 7",
but it 1s not clear what meaning can be attached to this value.

5. Discussion

We must emphasize that the discussion in the present paper is based on a very crude
model, which can be analysed with ease only at T = 0 and for « > 1, and that 1t depends
rather critically both on the approximate validity of equation (3.9) and on the absence of
any contact potential at the core boundary. There 1s also the difficulty, already mentioned,
connected with the transfer of the force (3.11) to the lattice. We have assumed that this
transfer takes place in the immediate neighbourhood of the core boundary. This is a
reasonable assumption in the case of the dirty system, where the mean free path of the
normal core electrons is much less than the core diameter, but 1t is less reasonable in the
clean case. Indeed, in the clean case it might well be that we ought to imagine that the
transfer of the force to the lattice 1s uniformly distributed over the core region, and that the
force therefore acts as an extra driving force on the core electrons. We can easily work
out the consequences of this latter assumption: the analysis 1s a straightforward modufica-
tion of that given 1n § 3.1. We find that to obtain agreement with experiment we have
to take 7," = 7,” = — = This is unreasonable. However, if we also modify the relation
(3.9) by adding a factor of two on the right-hand side, we find that we can obtain agreement
by taking 7," = 7," = 0, as in § 4. Thus the difficulty over the force (3.11) can in a sense
be avoided, although an ambiguity remains.

The crude nature of the model that we are using 1s bound to make one uneasy, as is the
fact that we have fed into our calculations assumptions which, although plausible, have
certainly not been properly justified, and the possibility cannot be ruled out that the
success of the model is fortuitous. The sceptic may therefore object that the model 1s of
Iittle value. In one sense we are inclined to agree with this view, and to agree therefore
that we may as yet have little real understanding of the motion of flux lines in supet-
conductors. However, we also feel that the model may help to fix attention on the basic
physical problems that lie behind a real understanding of this motion, and that it may
therefore act as a guide 1n the construction of a proper theoryT. But even this feeling may
may prove too optimistic. For the proper theory may circumvent the kinds of problem

t After the present paper was written, the authors learned of two mteresting attempts to construct
a proper theory one by Schmid (1966), the other by Kulik (1966).



420 W. F. Vinen and A. C. Warren

that arise in the model calculation. The empirical formula of Kim for the flux flow resist-
ivity is after all such a simple result, and so widely applicable, that it may well be the
consequence of some very general principle, which is quite independent of the detailed
processes occurring in the neighbourhood of the core of the flux line. But we have been

unable to find such a principle.
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Appendix 1

We give here a simple derivation of the BS equation of motion for a flux line, based
on the type of approach used in the present paper. We assume that the superconductor is
pure, and we continue to assume that the magnetic field in the core of the flux line can be
neglected.

According to BS there is in effect a contact potential across the core boundary. This
potential is a consequence of the assumption that there is local equilibrium of the electrons
with the lattice, i.e. that the value of the total potential, u—el +imov.2 in the lattice
frame just outside the core be equal to the value of u— e} just inside the core. We continue
to assume for simplicity that yu is everywhere the same. Then the value of the contact

potential is seen to be
m
AV = % Vgl (A1)

where v is the total superfluid velocity at the core boundary (assumed sharp). It follows
that the electric field in the core is given by (vy, v41, Ve € 1)

© = Trel? v X ¢ (A2)
instead of by (3.7). Hence we find for the velocity vy,
Vo = ~§vb><¢. (A3)

Like us, BS allow a displacement of the boundary of the moving core, owing to relaxation,
but in effect they simply assume that (in our notation)

D = —7v.. (A4)
Hence, using (3.15) and (A3) we find that
Viae = Vsi- (AS)
Therefore, from (A3) and (A4), we find that the values of B and y in the equation of
motion (1.1) are given by
820 y==x (46)

instead of by (3.17). This is the BS result, in the limit when the magnetic field in the core

of the flux line can be ignored. )
We note that the total force acting between the normal core electrons and the lattice

is now equal to (Ne/2c)vy x ¢. In order that equation (2.1) can be satisfied, an additional
force, equal to (Nef2¢)(vy,—2vy;) X &, must be assumed to act between the electrons and
the lattice at the core boundary. Difficulties associated with this extra force have already

been mentioned.

Appendix 2
In this appendix we attempt to derive equation (3.12) of BS. Essentially this equation
has the form 1
4T, =1 (A7)
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where Jg and J, are the mass current densities associated with the superfluid and normal
fluid, and 7 1s the relaxation time for electrons in the normal state; the force f is given by

f= — V{F(v.)} - NeE (A8)

where F(v,) is the free energy per unit volume associated with a superfluid velocity v,
(defined by our (3.21)), N 1s the number of electrons per unit volume, and E is the total

electric field.
We start by assuming that the rate of change of the total mass current is given by

O ¥ W nep g xH) = S xH) = g = L (ot ) (A9
—_— = —NeE,— —(J,xH),— —(J;xH),— ~Jy,— — (v, )5, + 0

8t 6t 8t 1 m n m 8 1 T ni 6x] sivs) ni n]) ( )
where the last term is the divergence of the total momentum flux density tensor, and v, is the
average velocity of the thermal excitations in the electron system. This equation seems
reasonable except for the relaxation term —J, /7, where we have assumed, without
justification, that a single relaxation time 1s involved, equal to that in the normal state.
From (A9) we find that

oJ, al, e 1 . .
+—== = NeE— —(J s+ T)xH—=J, - vy divI;— (J5. V)Vs— v div I, = (J, . V)V,
m T

8—25 ot
(A10)

In practice, the terms in 8J,/df, JoxH, (J,. V)v, are small, and we shall neglect them.
Furthermore, the total current must be divergence-free, and hence

aJ, 1 .
sy 2, = —NeE— S 3 xH = (ve—=v) div I, — (35 . V)V, (Al1)
ot 1 m
But we have from BS, equation (2.1),
oF(v,)
J, = (A12)
ov,
and hence
VFW)} = (Js . V)ve+ I, xcurlvg
~(3,. Vet I, xH. (A13)
m
Therefore A
J
a_: +-J, = — NeE— V{F(v)}—(ve—v,) div J,. (A14)
.

This agrees with equation (A7) only if the supercurrent and normal current are separately
divergence-free, and we believe therefore that (A7) can be valid only if this condition is
satisfied (quite apart from the difficulty that the relaxation term is of uncertain validity).
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