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Extended abstract 

The two primary tasks outlined in this report are: 
 

i) A characterisation of the critical current density as a function of magnetic field, 
temperature and strain ( JC(B,T,ε) ) of the VAC-CSMC strand. 
ii) A characterisation of JC(B,T,ε) of the LMI-TFMC strand.  

 
The numerical parameterisation required for magnet engineering purposes for both 
of these strands are presented in Appendix I of this report—also parameterisations 
of data for a Furukawa Nb3Sn ITER strand, a Sumitomo Nb3Al strand and an OST 
strand are included.  These parameterisations include FEA corrections.  

 
We have investigated the optimised design of helical springs for making JC(B,T,ε) 
measurements and used finite element analysis to analyse the spatial strain profile 
obtained throughout a twisted helical spring. It is demonstrated that the strain gradient 
across the wire is small when using tee-shaped springs and can be corrected for using 
finite element analysis. Supplementing previous work by Walters et al., we recommend 
springs made with highly elastic materials (e.g. Ti-6Al-4V), optimised tee-shaped cross-
sections, and optimum integer numbers of turns (e.g. 4 or 5) to give the best performance 
in relation to the transverse and longitudinal strain uniformity in the wire. 

  
Comprehensive ( )C , ,J B T ε  data are presented for the EM-LMI and Vac Nb3Sn 
superconducting wires used in the two ITER model coils. Various consistency tests 
demonstrate good interlaboratory agreement and that JC is a single-valued function of B, 
T, and ε. For high-upper-critical-field (28−30 T) Nb3Sn wires such as those intended for 
ITER, we report an approximately universal relationship between normalised ( )*

C2 0B  

and intrinsic strain, and a power-law relationship between ( )*
C2 I0,B ε  and ( )*

C IT ε  with a 
typical value of ~2.2 for the exponent. Both results differ from those obtained previously 
for binary, low-upper-critical-field (~24 T) Nb3Sn wires in which ( )*

C2 0B  and *
CT  are less 

strain-dependent and the power-law exponent is larger (≥ 3).  
 
The standard Summers Scaling Law therefore provides a relatively weak strain-
dependence for JC which does not accurately fit the ( )C , ,J B T ε  data for either the 
EM-LMI or Vac wires.  
 
We derive a simplified Interpolative Scaling Law to describe ( )C , ,J B T ε  in 
technological Nb3Sn wires with high values of upper critical field, motivated by 
microscopic theory and scaling considerations. The scaling law incorporates a 
polynomial function for normalised ( )*

C2 I0,B ε  and modified power-law relations 
between the strain-dependent variables. It allows accurate (~4%) parameterisations to be 
made of complete ( )C , ,J B T ε  datasets and, with appropriate universal values for some 
of the parameters, reasonably accurate and extensive predictions to be made from partial 
datasets.  
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1 Background and Introduction 

The ITER model coils provide large scale integrated tests of high current (40–60 kA) 
cable-in-conduit superconductors in multi turn high field coils, under stress/strain 
conditions similar to those required in ITER. The Toroidal Field Model Coil (TFMC), 
with EM-LMI internal-tin Nb3Sn wires in a stainless-steel jacketed cable, and the Central 
Solenoid Model Coil (CSMC), with Vacuumschmelze bronze-route Nb3Sn wires in an 
Incoloy-908 jacketed cable3. On both coils, current sharing measurements can be 
performed on the conductors in the temperature range from 4.5–8 K for fields up to 9 T 
(TFMC) and over 13 T (CSMC). The CSMC coil has been successfully built and tested 
with two insert coils (CS and TF inserts). The TFMC has been tested in the TOSCA 
facility at FzK in Karlsruhe. The strain tolerance of the critical current of strands is an 
important engineering design parameter for such model coils. During construction of 
magnets, a wind–heat-treat–insulate–impregnate procedure subjects the conductor to 
limited elastic deformation. During cool-down, the differential thermal contraction of the 
different component parts in the system strains the conductor. In these model coils, the 
differential thermal contraction during cool-down causes intrinsic axial strains on the 
Nb3Sn filaments of approximately −0.65% (compression) for the TFMC4 and −0.3% for 
the CSMC5, while the magnetic (operating) strains are ~0.1% (tension)3 and occur 
cyclically.    

In our previous contract (EFDA 02-662), the performance of the LMI and Vac 
strands were investigated under cyclic tests within a limited range of intrinsic strain 
(ε I ≈ 0.7%), temperature (T = 4.2 K) and magnetic field (B = 7–8 T). ( )CJ B  
measurements on the EM-LMI and Vac wires have been performed at a temperature of 
4.2 K and zero applied strain6,7, as a function of temperature at zero applied strain8,9, as a 
function of axial strain at 4.2 K10-12, and over a limited range of phase space as a function 
of axial strain and temperature8,13,14. In this report (and associated paper15), we present 
the results of full comprehensive, high-sensitivity (10 µVm−1) measurements of 

( )C , ,J B T ε  for both of the wires used in the model coil tests.  
The structure of this report is as follows: In section 2, we address the properties of 

the helical springs used to measure the effect of axial strain on the critical current density 
of superconducting wires. The complexity of the axial and radial strains is outlined. 
Relevant measurements are presented and analysed using FEA. We conclude with a 
description of the optimum design for the helical spring to obtain accurate and reliable 
strain measurements. In section 3, we develop a scaling law based on a theoretical 
analysis of the effect of strain which combines microscopic theory and phenomenological 
theory—it includes a review of the extensive experimental data now available. In 
particular, we provide a justification of a simplified scaling law which is used to 
parameterise the data presented for the Vac and LMI wires.   
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2 Properties of helical springs used to measure the 
effect of axial strain on the critical current density of 
superconducting wires 

2.1 Review of the use of springs for measuring the strain-dependence 
of JC 

Measurements of the axial strain dependence of the critical current density in high 
magnetic fields provide important information on technological superconducting wires 
and tapes. The brittle superconductor Nb3Sn, which is the focus of this report, has been 
studied most extensively1,10,14-26, due to its importance in superconducting magnet 
technology and large sensitivity to the strains that occur in magnets due to differential 
thermal contraction and Lorentz forces. For future large-scale and high-field applications 
of Nb3Sn (e.g. ITER), quantifying the effect of axial strain (ε) on the critical current 
density (JC) is particularly important3,25. Axial strain effects have also been investigated 
in a number of other materials including NbTi27, Nb3Al2,28-30, PbMo6S8

31,32, MgB2
17,33,34, 

Bi-222317,18,35-39 and YBCO40. In these measurements, the techniques used to apply the 
strain generally fall into one of two categories: “axial-pull” or “bending spring”. In the 
axial-pull technique1,10,41, strain is applied to a short straight sample via end-grips which 
also serve as the current leads. In the bending-spring technique, the conductor is attached 
to a thick spring which is then deformed to apply the strain to the sample. Various 
different spring geometries are used, including the helical (“Walters”) spring18,19,42, 
which is investigated in this section and is used for the measurements in this report, the 
U-shaped spring14,17,34, and the arc-shaped (“Pacman”) spring17,43. 

In standard JC measurements, the conductor is perpendicular to the applied magnetic 
field (or to within ~6o)26,44. For axial-pull apparatus used in standard solenoid magnets, 
the sample length is therefore limited to the diameter of the cold bore: typically 40 mm1. 
U-shaped bending springs generally have a similar sample length17. In these short-sample 
measurements, the current-transfer regions near the current contacts can overlap with the 
region between the voltage taps, resulting in a current-transfer voltage being measured, 
which must be corrected for in order to obtain the intrinsic voltage-current 
characteristics45,46. The electric field criteria used to define JC are therefore relatively 
high: typically 200−500 µVm−11,14,45. Axial-pull apparatus can be used with split-pair 
magnets in order to increase the sample length to typically 180 mm, although the 
maximum fields of these magnets are generally lower than solenoid magnets (≤15 T)10,41. 
A recent variation of the U-shaped bending spring, the Pacman, uses an initially curved 
beam to increase the sample length to ~120 mm (the circumference of the magnet 
bore)17,43. The Walters spring has a helical sample geometry similar to that used in 
(internationally-agreed) standard JC measurement techniques19,47,48. This geometry 
accommodates ~800 mm long samples18,19,42, enabling critical current density 
measurements to be routinely performed with a sensitivity of 10 µVm−1 and, with care, at 
electric fields below 1 µVm−149. 

Axial-pull measurements are limited to tensile applied strains, as samples generally 
buckle in compression. However, differential thermal expansion of the component parts 
of the conductor often leads to a compressive prestrain on the superconducting material, 
which makes measurements possible over a limited range of compressive intrinsic 
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strain20,24,39. The prestrain can in principle be increased by cladding the conductor in a 
stainless-steel jacket50,51 or using specially-prepared wires24. In contrast, bending-spring 
measurements enable both compressive and tensile axial strains to be applied to a sample 
that is attached to the spring. These measurements are particularly important for 
predicting conductor performance in systems where the structural materials cause a large 
thermal precompression, such as the cable-in-conduit conductors with stainless-steel 
jackets used for fusion applications (see Section 3)4. In bending-spring measurements, 
differential thermal contraction of the spring and attached sample results in thermal 
stresses on the sample at cryogenic temperatures (in contrast to axial-pull measurements, 
in which there are no thermal stresses). For measurements on wires, it is generally 
assumed that the effect of the differential thermal contraction is simply to produce an 
additional axial strain on the conductor that can be subtracted in order to obtain the 
intrinsic strain behaviour—this assumption is confirmed in this report. Methods for 
estimating the thermal strain due to the sample holder have been described18. In addition, 
when strain is applied using a bending spring, there is both a transverse strain gradient 
across the width of the conductor (which depends on the cross-section of the turns of the 
spring8,19) and a longitudinal strain variation along the length of the conductor (see 
Section 2.4.3). Bending springs avoid the possibility of stress concentrations at weak 
points in the conductor, but the elasticity of the spring is also an issue. It is clear that the 
properties of the spring are important factors that must be understood in order to perform 
accurate variable-strain measurements on conductors. Detailed tests are reported here of 
the effects of spring material and geometry since although some such results have been 
presented for other types of bending springs43, the results reported in the literature for 
helical springs are very limited. 

In this section (and associated paper52), we present JC versus axial strain data for 
LMI and Vac Nb3Sn wires measured on helical springs of different materials and  
geometries, together with results from finite element analysis (FEA) of these systems. 
The influence of thermal prestrain, elasticity of the spring, and the transverse and 
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Figure 2.1. (a) Photograph of a superconducting wire mounted on a tee-shaped spring; (b) and 
(c) sections through turns of the tee-shaped and rectangular springs showing radial and axial 
dimensions in mm. 
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Figure 2.2. Schematic diagrams of the top and bottom parts of the ( )C , ,J B T ε  probe 
(reproduced from Cheggour and Hampshire42). 
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longitudinal strain uniformity will be investigated in detail. We will evaluate the extent to 
which the intrinsic properties of conductors can be accurately measured (and hence to 
what degree the different measurement techniques are, in principle, equivalent24,51). 
Based on our experimental and FEA results, we will also report a number of 
recommendations about the design of helical springs, supplementing previous work by 
Walters et al.19. The section is organised as follows: Section 2.2 consists of a description 
of the apparatus and techniques, and the Vac and LMI samples investigated; the results of 
the variable-strain critical current density measurements are presented in Section 0; in 
Section 2.4, the FEA results are presented and comparisons are made with the 
experimental data; finally, some recommendations on spring design are made in Section 
2.5. 

2.2 Experimental procedure 

2.2.1 Apparatus and techniques 

( )C , ,J B T ε  measurements were performed on superconducting wires attached to 
helical springs [see Figure 2.1(a)] in which the strain is generated by rotating one end of 
the spring with respect to the other19. The probe (see Figure 2.2)28,42 uses two concentric 
shafts to apply the torque to the spring: the inner shaft connects a worm-wheel system at 
the top of the probe to the top of the spring, and the outer shaft is connected to the bottom 
of the spring via an outer can. For measurements at 4.2 K, the outer can contains a 
number of holes to admit liquid helium from the surrounding bath, whereas for variable-
temperature measurements, the outer can forms a vacuum space around the sample with a 
copper gasket and knife edge seal between the can and the outer shaft. The current leads 
sit in liquid or gaseous helium for the length of the probe, and enter the vacuum space 
around the sample via high-current lead-throughs53. At particular values of magnetic 
field, temperature, and strain, measurements are made of the voltage (V) across sections 
of the wire as a function of the current (I), which is increased at a constant slow rate. 
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Figure 2.3. Log-log plot of electric field versus engineering current density (and voltage versus
current) for the EM-LMI wire at a temperature of 4.2 K, zero intrinsic strain, and integer 
magnetic fields between 10 and 15 T. 
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A number of modifications to the apparatus have been carried out to increase the 
range and accuracy of the various experimental parameters (see Table 2.1): 

Voltage: In order to reduce thermal emfs, the copper voltage leads are continuous 
from the sample to the voltage amplifiers (except for a set of soldered joints close to the 
sample, where the temperature is approximately uniform). Measurements are performed 
using a nanovolt amplifier (EM-Electronics A10), the accuracy of which was checked 
against a nanovoltmeter (Keithley 182). The amplifier has a voltage noise equivalent to 
the Johnson noise of a 20 Ω resistor at room temperature. For a bandwidth of ~1.5 Hz, 
the expected noise is therefore ~2 nV (half the peak-to-peak value), or ~0.1 µVm−1 for 
the typical voltage-tap separation of 20 mm54. Figure 2.3 shows a representative set of 
V−I (or E−J: electric field–current density) characteristics, where a thermal offset voltage 
that is a linear function of current (time) has been subtracted from the measured data 
(typically 1 nV per 100 A): it can be seen that the noise floor is within a factor of ~2 of 
the amplifier noise. Voltages (electric fields) up to a maximum of ~50 µV (2500 µVm−1) 
are generally measured, and up to three sections of the wire can be measured 
simultaneously.  

Current: The total cross-sectional area of copper wire has been increased 
considerably in the vacuum space at the bottom of the probe (factor ~10) to reduce the 
ohmic heating in this region. In addition, the copper plating on the top and bottom parts 
of the spring (i.e. in the current transfer regions) is made particularly thick (up to 
~1 mm), and the electrical contact between the current leads and the superconducting 
wire are made using this electroplated copper (the solder is applied subsequently). The 
maximum current that can be applied without heating of the sample is ~400A for 
measurements at 4.2 K, and ~200 A above 4.2 K. The uncertainty in the current is 
estimated to be 10 mA for our 120 A power supply, and 2 A for our 500 A supply. 

Magnetic Field: Measurements in Durham are performed using our superconducting 
magnet in fields up to 15 T. An extended vacuum can and inner shaft (~600 mm long) 
also enable the probe to be used in a tail-dewar with a 38 mm diameter bore in magnetic 
fields up to 28 T using the resistive magnets at the European high-field laboratory 
(Grenoble). The field variation over the turns of the spring in both configurations is 
always less than 0.5%. 

Table 2.1. Range and uncertainty of the experimental parameters for the ( )C , ,J B T ε  
measurements. 
 

 Parameter  Range  Uncertainty 

 Voltage  
 (Electric field) 

 ≤50 µV 
 (2500 µVm-1) 

 5 nV noise (Durham) 
 (0.25 µVm−1) 

 Current  ≤400 A (liquid He) 
 ≤200 A (>4.2 K) 

 10 mA (≤120 A) 
 2 A (≤500 A) 

 Magnetic field  ≤28 T (Grenoble) 
 ≤15 T (Durham)  0.5% 

 Temperature  4.2 to 20 K  20 mK 

 Applied Strain  +0.7% to −2% 
 ∼103 cycles   3% 
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Temperature: Measurements above 4.2 K are carried out (in a low-pressure helium 
gas environment) using three independent temperature controllers with Cernox 
thermometers and constantan wire heaters distributed to produce a uniform temperature 
profile along the turns of the spring. The thermometers were calibrated commercially in 
zero magnetic field, and corrected for the small in-field changes to the calibration. The 
results of various consistency tests show that the uncertainty in the temperature of the 
wire is ~20 mK15,28. 

Strain: The uncertainty in the applied strain is estimated to be ~3% from a 
consideration of uncertainties in the calibration factors obtained from strain-gauge 
measurements, the correction factors used to calculate the strain at the middle of the wire, 
and the longitudinal strain variations. These factors are discussed below. 

2.2.2 Samples 
Measurements were made on the two ITER-candidate ∅0.81 mm Nb3Sn wires: the 
EM-LMI internal tin wire and the Vacuumschmelze (Vac) bronze-route wire. The wires 
were heat-treated in an argon atmosphere on oxidised stainless-steel mandrels using a 
three-zone furnace (large isothermal zone), with an additional thermocouple positioned  

Table 2.2. Properties of the different spring materials and of a typical Nb3Sn wire. 
 

 Material 

Thermal 
expansion 
293−4 K  
(%) 

Young’s 
modulus at 
4 K [293 K] 
(GPa) 

Poisson’s 
ratio at 
4 K [293 K] 

Elastic  
limit at  
4 K [293 K] 
(%) 

 Titanium 
 -4Al-6V  −0.174a  130b [110]  [0.31]b  1.3c [1.0]d 

 Copper-
 beryllium 
 (TH04)  

 −0.317a  132 [119]c  [0.27]b  1.0 [0.9]c 

 Brass 
 (C27200)  −0.370e  [105]f  [0.34]f  [0.4]f 

 Stainless 
 steel 316L  −0.300a  208a [193f]  0.28 [0.29]g  [0.1]f 

 Nb3Sn wire   

 Copper   

 Nb3Sn 

 −0.28g,h 
 

 −0.334g   

 −0.16j 

 25−100g,i  
 

 137 [128]g   

 100 [135]g 

 — 
 

 [0.31]f   

 0.4j 

 ~0 [~0]g  
 

 0.04 [0.02]g   

 — 
a Reference55. Stainless steel data is for type 316. 
b Reference56. Cryogenic data for Ti-6Al-4V at 20 K. 
c Reference19. 
d Reference42. 
e Reference57. 70/30 Brass (C26000). 
f Reference58. 
g Reference59. Stainless steel data is for type 316LN. 
h Reference60. Vacuumschmelze bronze-route wire. 
i
 Reference61. A range of tangent modulus values are shown for the Nb3Sn 
wire (which behaves plastically). Similar at 293 and 7 K. 
j Reference22. 
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next to the samples in order to monitor the temperature. The heat-treatment schedules 
were as follows: for the EM-LMI wire, 210oC for 100 h, 340oC for 24 h, 450oC for 18 h, 
and 650oC for 200 h (ramp rate: 50oC per hour throughout); for the Vac wire, 570oC for 
220 h, and 650oC for 175 h (ramp rates: 100oC per hour, 80oC per hour, 100oC per hour). 
The wires were then etched in hydrochloric acid to remove the chromium plating, 
transferred to the springs, and attached by copper-plating and soldering (the Ti-6Al-4V 
spring was nickel-plated prior to attaching the wire). Two different geometries of spring 
were used for the measurements, details of which are given in Figure 2.1: the first (an 
older design) has turns with a rectangular cross-section, while the second uses a tee-  
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Figure 2.4. Engineering critical current density (and critical current) as a function of applied 
strain at 4.2 K and integer magnetic fields between 10 and 15 T. Data are shown for EM-LMI 
wires on Cu-Be springs with rectangular and tee-shaped cross-sections. The lines are a guide to 
the eye. 
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shaped cross-section (based on the design of Walters et al.19). Measurements were 
performed on springs made from a number of different materials: Ti-6Al-4V, copper-
beryllium (TH04 temper), brass, and stainless steel (SS) 316L. Table 2.2 shows some of 
the properties of these materials. Four EM-LMI samples were measured on rectangular 
springs made from the different materials, and a fifth EM-LMI sample was measured on 
a tee-shaped spring made from Cu-Be. In addition, Vac samples were measured on a 
brass rectangular spring and on a Cu-Be tee-shaped spring. Variable-strain JC 
measurements were carried out at 4.2 K in magnetic fields up to 23 T in Grenoble (expect 
for the EM-LMI sample on the Cu-Be tee-shaped spring, which was measured in 
magnetic fields up to 15 T in our superconducting magnet). In all of the measurements, 
tensile strains were first applied to the sample and then compressive strains. JC at zero 
applied strain was generally found to be reversible after the tensile strain cycle to within 
~1%, in agreement with previous strain cycling results12,62. 

Engineering critical current density (JC) data were calculated by dividing the critical 
current (IC) by the total cross-sectional area of the wire (5.153 × 10−7 m2) and defined at 
an electric-field criterion of 10 µVm−1. JC was calculated using the value of current in the 
superconducting material alone, obtained by subtracting the current in the normal shunt 
from the total current (for example, the typical shunt resistance is ~5 µΩ at 6 T 
corresponding to a shunt current of 40 mA at 10 µVm−1)28. 

2.3 Critical current versus strain results 

2.3.1 Results for different spring geometries 
Figures 2.4 and 2.5 show variable-strain engineering critical current density and n-value 
data for EM-LMI wires mounted on Cu-Be springs with rectangular and tee-shaped 
cross-sections. The n-value is calculated using nE J∝  for electric fields between 10 and 
100 µVm−1. The applied strains are calculated using calibration data from strain gauges 
mounted on the surface of the spring that are corrected using FEA to give the strain at the 
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midpoint of the wires as described in Section 2.4.1. Good agreement is found between 
the results for the two different spring geometries (i.e. the old rectangular spring 
geometry reported in EFDA02-662 and the new  tee-piece shaped springs reported) when 
the applied strain is FEA-corrected to account for the strain gradient across the wire: the 
JC data superimpose to within ±2%, and the n-value data to within ±10%. These results 
therefore validate the methods used to obtain the characteristic strain for the wire (see 
Section 2.4.1). 
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Figure 2.7. (a) Critical current at 4.2 K and 15 T, (b) n-value at 4.2 K and 19 T, and (c) effective 
upper critical field at 4.2 K as a function of intrinsic strain for EM-LMI wires on four different 
spring materials. The lines are a guide to the eye. Intrinsic strain was calculated from the applied 
strain by subtracting the value at which the effective upper critical field is a maximum. 
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2.3.2 Results for different spring materials 
Figure 2.6 shows the engineering critical current density as a function of applied 

strain (εA) for EM-LMI wires on rectangular springs made from four different 
materials—reported in EFDA02-662 and FEA corrected. The spring material clearly 
affects the relationship between JC and applied strain, and in particular the position of the 
peaks in ( )C AJ ε . Intrinsic strain (ε I) is defined relative to the applied strain where JC is a 
maximum (εM) by: 

 I A Mε ε ε= − . (0.1) 

It is found by plotting JC as a function of intrinsic strain, that the data for the four 
different spring materials approximately superimpose, typically to within ±5% [see 
Figure 2.7(a)]. Similar agreement is also found for the n-value [Figure 2.7(b)] and the 
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effective upper critical field [Figure 2.7(c)]. The values of effective upper critical field 
Figure 2.7(a)]. Similar agreement is also found for the n-value [Figure 2.7(b)] and the 
effective upper critical field [Figure 2.7(c)]. The values of effective upper critical field 
[ ( )*

C2 4.2 KB ] were obtained from Kramer plots, examples of which are shown in Figure 
2.864. The level of agreement between the different samples is typically ±1% for the 

( )*
C2 4.2 KB  data as a function of intrinsic strain. The largest deviations from the 

universal curves are observed for the stainless steel spring. This can be attributed to 
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plastic yielding of the steel, which has an elastic limit of ~0.1%, and difficulty bonding 
the wire to the spring. The different values of εM are related to the additional thermal 
strains due to the sample holder, which vary according to the thermal expansion of the 
material used (see Table 2.2). The universal intrinsic strain dependences show that these 
additional strains are predominantly axial in nature, so that the same strain-state in the 
wire is obtained from different combinations of applied (mechanical) strain and thermal 
strain. In Section 2.4.2, the measured values of εM will be compared with predictions 
from FEA. 

Figure 2.9 shows the values of effective upper critical field at 4.2 K obtained from 
measurements on Vac wires mounted on springs of different materials and geometries (a 
brass rectangular spring and new data on a Cu-Be tee-shaped spring). These data also lie 
on a universal curve as a function of intrinsic strain to within ±1%. 

2.3.3 JC homogeneity along the wire’s length 
Figure 2.10 shows the strain-dependence of JC for different sections of Vac and 

EM-LMI samples on Cu-Be tee-shaped springs. Each section was ~20 mm long and 
separated by approximately one turn. The JC data agree to within ±2% for both samples, 
which is typical of the samples that we have investigated, although occasionally (one in 
fifteen samples) significantly different behaviour is observed for one of the sections of 
the wire42. 

2.4 Modelling results and comparisons with experimental data 

2.4.1 Results for different spring geometries 

2.4.1.1 Analytic equations Walters et al. gives the following expression for the 
circumferential strain εθθ in a helical bending spring as a function of the radial distance 
r19: 

 ( )n1K r rεθθ = − , (0.2) 

where K is a factor that depends on the applied angular displacement θ , the number of 
turns of the spring N, and the pitch angle α :  

 ( )2 cosK Nθ π α= . (0.3) 

The position of the neutral radius rn can be calculated using the condition that there is no 
net force perpendicular to the cross-section of the spring, i.e.: 

 ( ) ( ) ( )d 0w r E r r rε =∫ , (0.4) 

where w is the width of the section (in the axial direction) and E is the Young’s modulus 
(both of these quantities can vary with position to allow for complex spring geometries 
and the presence of the wire—the integral can generally be calculated analytically). 
Equations (0.2)−(0.4) can be used to predict the strain-state in springs and attached wires, 
although the treatment does not consider the effects of the complex distortions that occur 
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when the spring is twisted19. These “loaded beam” equations will be compared with 
results obtained from finite element analysis in the next section.  

2.4.1.2  Finite element analysis A typical finite element model consisting of ~20 000 
8-node brick elements is shown in Figure 2.12(a). The results were found to change by 
less than 1% for further increases in mesh density. The models used elastic-plastic 
material properties with stress-strain curves defined via a modified power-law fit to the 
following parameters: Young’s modulus, yield stress, ultimate stress, and elongation at 
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Figure 2.12. (a) FEA model of a tee-shaped spring with attached wire. (b) The circumferential 
strain on a plane through the centre of the spring at an angular displacement of +15o. 
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Figure 2.11. The circumferential strain as a function of the radial distance at different angular 
displacements for (a) rectangular and (b) tee-shaped springs with attached ∅0.81 mm wires. The 
symbols show the FEA results at the centre of the cross-section (shown by the dashed lines), 
while the solid lines show fits made using Equation (0.2). The variation in strain in the axial 
direction is negligible (see Figure 2.12). 
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ultimate stress59. Figure 2.12(b) shows the circumferential strain due a +15o 
(anticlockwise) rotation of one end of the spring. The strain is approximately independent 
of axial position throughout the cross-section of a turn of the spring. The variation of 
circumferential strain with radial distance (along the centre of the cross-section) is shown 
in Figure 2.11 for the Cu-Be rectangular and tee-shaped springs used in the JC vs. ε  
measurements. The FEA results can be fitted quite accurately using Equation (0.2) with 
rn and K as free parameters (lines in Figure 2.11). The values of rn obtained from the FEA 
(8.52±0.01 mm for the rectangular spring and 4.24±0.03 mm for the tee-shaped) agree 
well with those calculated using Equation (0.4) (8.54 and 4.24 mm). The two methods 
therefore give approximately the same radial-dependence for the strain in the turns, 
although not the same absolute values of strain (discussed below).  

For the spring in the elastic regime, a linear relation between strain and angle is 
observed experimentally in strain-gauge calibrations, obtained from the finite element 
analysis (to within ~0.5%), and predicted by Equation (0.3). Table 2.3 shows calibration 
factors defined as the strain per unit angular displacement at various radial positions: the 
outer surface of the spring, the active part of a strain gauge (total height above the surface 

Table 2.3. Calibration factors (% applied strain per degree angular displacement) for the Cu-Be 
rectangular and tee-shaped springs. Factors obtained from finite element analysis and the loaded-
beam equations are shown for springs with and without attached wires (∅0.81 mm, 

30 GPaE = ), giving the strain at the outer surface of the spring, at the active part of a strain 
gauge (i.e. 45 µm above the surface of the spring) and at the middle of the wire. The corrected 
calibration factors (for the middle of the attached wire) are calculated from the measured values 
(for strain gauges on springs without attached wires) using the FEA results. 
 

Calibration factor (% per degree) 
Cu-Be 
spring 
geometry 

Position Measured 
 
 

with shafts

FEA 
 
 

no shafts 

Loaded-
beam eqs. 
 

no shafts 

Corrected 
  
 

with shafts 

Rectangular 

Outside 
of spring  0.0143 0.0156   No 

 attached 
 wire Strain 

gauge 0.0139  0.0145 0.0158  

Outside 
of spring  0.0141 0.0155  

 Attached 
 wire Middle 

of wire  0.0159  
(+9.3%) 

0.0174 
(+10.1%) 

0.0152 
 

Tee-shaped 

Outside 
of spring  0.0269 0.0380   No 

 attached 
 wire Strain  

gauge 0.0221  0.0269 0.0381  

Outside 
of spring  0.0267 0.0379  

 Attached 
 wire Middle 

of wire  0.0275 
(+2.0%) 

0.0388 
(+1.7%) 

0.0226 
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of the spring: 45 µm65), and the midpoint of a ∅0.81 mm wire. Calibration factors are 
presented for strain-gauge measurements on springs without attached wires in the strain-
probe (helical strain), finite element analysis (helical strain, averaged over the central 
turns of the spring: see Section 2.4.3), and the loaded-beam equations (circumferential 
strain). Helical strain is defined as the strain parallel to the helical path at a particular 
radius (e.g. the axis of the wire), and differs from the circumferential strain by typically 
1% on the outer surface of the spring. The measured calibration factors are the lowest of 
the three, primarily because of the shafts and connectors twisting in the probe (the 
rotation of the top of the spring is measured directly, but, in standard operation, the 
rotation of the bottom of the spring is measured via the shafts and connectors that carry 
the torque). For the rectangular springs, there is reasonable agreement between the 
measured calibration factor and the value from FEA. The larger differences observed for 
the tee-shaped spring are consistent with the prediction that the torque required per unit 
angular displacement is a factor of ~4 larger for this spring (see Tables 2.3 and 2.4). The 
calibration factors from the loaded-beam equations are considerably larger than the FEA 
values, which can be attributed to the effects of the radial compression and the distortion 
of the envelope of the turns that occur when the spring is twisted: these effects are not 
included in the loaded-beam equations and are expected to reduce the strains relative to 
the calculated values19. Strain-gauge measurements show that the calibration factors are 
independent to within ~2% of both spring material and temperature (293−4 K), consistent 
with FEA and the loaded-beam equations for springs with and without attached wires. 

 The FEA results have been used to relate the measured calibration factors (for 
which the strain gauge is attached to the surface of a spring without an attached wire) to 
the strain at the midpoint of a ∅0.81 mm wire attached to the spring. For these wires, 
there is negligible difference between the calculated strain at the midpoint and the mean 
strain on the filaments. As shown in Table 2.3, the effect of attaching a wire 
(E = 30 GPa) to the spring decreases the calibration factor, whereas the radial-
dependence of the strain and the different radial positions of the strain gauge and the 
midpoint of the wire cause the calibration factor to increase (see Figure 2.11). For the 
experimental data presented in this report, the strain values are always quoted for the 
midpoint of the wire using the corrected calibration factors. The FEA corrections are 
~2% for the tee-shaped spring and ~9% for the rectangular spring, the magnitudes of 
which are confirmed by the loaded-beam equations. The good agreement between the 
results for different spring geometries demonstrates that this approach is valid (Figures 
2.4, 2.5, and 2.9). 

Table 2.4. Design parameters for the Cu-Be rectangular and tee-shaped springs, obtained both 
from FEA and the loaded-beam equations. 
 

 Cu-Be 
 spring  
 geometry 

Strain gradient 
across ∅0.81mm 
wire (%) 

 Torque per % 
 applied strain 
 (Nm)   
 

Ratio of strain at 
inside of spring to 
strain at outside of 
spring 

  FEA [loaded-beam eqs.] 

Rectangular   ±9.9 [±10.5]   27 [22] −1.47 [−1.44] 

Tee-shaped   ±2.9 [±2.1]   67 [63] −2.16 [−1.97] 
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The transverse strain gradient across the wire differs considerably between the two 
spring geometries. The variations are approximately ±10% for the rectangular spring and 
±3% for the tee-shaped spring (see Table 2.4), although these values are somewhat 
smaller over the central region of the wire occupied by the superconducting filaments 
(approximately ∅0.7 mm for the EM-LMI wire and ∅0.5 mm for the Vac wire66). For 
the EM-LMI wire on the rectangular spring, the variation in strain corresponds to a 
variation in ( )*

C2 4.2 KB  of ±0.5 T at an applied strain of −0.5%, while for the tee-shaped 
spring the variation is ±0.1 T. The agreement in the n-values for the different spring 
geometries, as shown in Figure 2.5, is to be expected if the intrinsic variations in the 
superconducting properties—due to composition gradients, for example—are larger than 
those due to the strain gradient67,68.  

The data in Table 2.3 are valid for the elastic regime of the spring material, where 
critical current versus strain measurements are generally carried out. Table 2.4 shows the 
ratio of the circumferential strain at the inside of the spring to the circumferential strain at 
the outside of the spring for the two different geometries (see Figure 2.12). The 
magnitude of the strain is higher at the inner surface, and so the spring will yield first in 
this region. We note that finite element analysis shows that at the inner surface of the 
spring, the circumferential strain is significantly different from the helical strain but has a 
similar magnitude to the von Mises equivalent strain that is appropriate for considering 
plastic yielding69. For a spring made of Cu-Be (with an elastic limit of 1%), yielding 
occurs when the strain on the outer surface is ~0.5% for the tee-shaped cross-section and 
~0.7% for the rectangular cross-section. Since some of the data presented in Section 0 
were obtained at high compressive strains where parts of the spring are in the plastic 
regime, the possible effects of plasticity also need to be considered. In strain-gauge 
measurements performed at room temperature on the Cu-Be rectangular spring (and a 
Ti-6Al-4V tee-shaped spring), deviations from the linear relation between strain and 
angle observed for the elastic regime became significant (equal to +2%) at an applied 
strain of −1.5% (−0.9% for the Ti-6Al-4V tee-shaped spring). These results are consistent 
with FEA that includes the role of plasticity and confirms that yielding at the inner 

Table 2.5. Calculated change in length between 293 and 4 K of the EM-LMI Nb3Sn wire 
(∅0.81 mm, 30 GPaE = ) on rectangular springs of different materials, and predicted and 
measured values of εM.  
 

Length change of wire 
293−4 K (%) 

εM (%) 
 Spring 
 material  FEA  

 [force-balance eq.] 
  Predicted 

 (FEA) 
 Measured 

 Titanium- 
 4Al-6V  −0.184 [−0.174]  0.12  0.10 

 ±0.02 

 Copper-
 beryllium  −0.315 [−0.316]  0.255  0.28 

 ±0.02 

 Brass  −0.364 [−0.369]  0.30  0.31 
 ±0.02 

 Stainless 
 steel 316L  −0.300 [−0.300]  0.24  (0.27 

 ±0.02) 
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surface does not have a very large effect on the average strain at the outer surface. 
Finite element analysis provides useful information about the changes in the spring’s 

dimensions when a torque is applied. At angular displacements corresponding to ±1% 
applied strain, the predicted change in the spring’s height (from 75 mm) is ±0.5 mm for 
the rectangular spring and ±1 mm for the tee-shaped spring. Our strain probe has a 
sliding keyway in the inner shaft to accommodate this change. If the spring is constrained 
so that the ends cannot move vertically, the calibration factor is predicted to be somewhat 
larger (~0.5%) for the rectangular spring and considerably larger (~5%) for tee-shaped 
spring. In addition, the outer diameter increases at compressive applied strains: the 
maximum increases are 1.5 mm (rectangular) and 0.5 mm (tee-shaped) at −1% strain 
(similar decreases occur for the inner diameter at tensile applied strains). 

2.4.2 Results for different spring materials 
It is well known that at cryogenic temperatures the filaments in a Nb3Sn wire are 

under compressive strain due to differential thermal contraction. It is generally assumed 
that the peak in the critical current density occurs when the applied axial strain cancels 
the axial component of this thermal strain20-22. Hence we can write down the following 
formula for the applied axial strain at the peak (εM) for our particular measurement 
procedure: 

 ( ) ( ) ( )( )
3

923 293 K 293 4 K 923 4 K
M Isolated wire Wire on spring Nb Sn compound

l l l
l l lε − − −∆ ∆ ∆= − + − . (0.5) 

The first term on the right-hand side of the equation is the relative change in length of the 
isolated wire on cooling from the reaction temperature (923 K) to room temperature 
(293 K), which has been calculated using finite element modelling to be −0.63% for the 
EM-LMI wire59. The second term is the relative change in length of the wire that has 
been attached to the spring at room temperature (by copper plating) and then cooled to 
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Figure 2.13. The helical strain at the outer surface of a Cu-Be rectangular spring (with four turns) 
as a function of helical distance: (a) results from strain-gauge measurements (the symbols show 
the measured data while the dashed lines are a guide to the eye); (b) finite element analysis
results. 
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4 K. A simple 1D “force balance” equation39 gives values for the relative change in 
length of the wire between 293 and 4 K that are within ~1% of the thermal expansion of 
the spring material (compare Tables 2.2 and 2.5), due to the small cross-sectional area of 
the wire in relation to the spring. Similar values are obtained from FEA, although there 
are somewhat larger differences for the Ti-6Al-4V tee-shaped spring, where the average 
contraction of the wire is 5% higher than the thermal contraction of Ti-6Al-4V (see Table 
2.5). The third term on the right-hand side of Equation (0.5) is the intrinsic thermal 
expansion of Nb3Sn between 923 and 4 K, for which a value of −0.69% has been used 
(923−293 K: −0.53%, 293−4 K: −0.16%)22. Table 2.5 shows the values of εM calculated 
using Equation (0.5), which show good agreement with the experimentally measured 
values for the different spring materials. 

Various studies have been carried out of the three-dimensional strain-state of the 
filaments in Nb3Sn wires70-75. Given the uncertainties in some of the parameters used in 
Equation (0.5), our results are consistent with models in which the peak in the 
superconducting properties occurs when the deviatoric strain or the axial strain in the 
filaments is a minimum (zero). In any case, the FEA confirms that after cool-down, the 
3D strain-state of the (EM-LMI) wire attached to the spring is, to a good approximation, 
equal to the strain-state of an isolated wire that is first cooled down and then subject to an 
axial strain. This equivalence between the thermal strains and the applied (mechanical) 
strains provides an explanation for the universal behaviour of the wires as a function of 
intrinsic strain (see Section 2.3.1). Note that this is not the case for tape conductors, 
where the differential thermal contraction also leads to an in-plane transverse strain on 
the tape76 (or for a wire attached to the spring with large amounts of copper-plating or 
solder). 

2.4.3 Strain uniformity along the wire’s length 
In order to investigate the uniformity of the strain along the length of the wire, 

measurements were carried out using 16 strain gauges placed around the outer surface of 
a Cu-Be rectangular spring. A sinusoidal variation of strain with helical distance was 
observed, as shown in Figure 2.13(a). The results obtained from the finite element 
analysis are shown in Figure 2.13(b). The measured “oscillations” have a similar 
wavelength to the FEA results (equal to one turn) but are both considerably larger and 

Table 2.6. The amplitude of the longitudinal strain oscillations for springs of different materials 
and geometries. 
 

Amplitude of oscillations (%)  Spring material and 
 geometry  −1.0% strain +0.5% strain 

 Rectangular (N = 4) 

  Cu-Be (meas.)   5  — 

  Cu-Be (FEA)   1.3  2.5 

  Brass (FEA)   3.9  3.6 

 Tee-shaped (FEA) 

  Cu-Be (N = 4.5)   1.4  0.7 

  Cu-Be (N = 2, 3, 4, 5, 6)   2.6, 0.1, 0.25, 0.3, 0.35  — 
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off-set spatially. At a mean applied strain of −1%, the measured value for the amplitude 
is ~5% of the mean, compared to the FEA value of 1.3% (see Table 2.6). 

Finite element analysis was used to investigate the strain variations for various types 
of spring over extended strain ranges. The size of the oscillations generally increases 
non-linearly with increasing strain, and for the Cu-Be rectangular spring is considerably 
larger at tensile strains than equivalent compressive strains, as shown in Figure 2.13(b). 
For the Cu-Be tee-shaped spring with four-and-a-half turns (used for the critical current 
measurements), the oscillations have a similar size to the rectangular spring in 
compression but are smaller in tension (see Table 2.6). Tee-shaped springs with integer 
number of turns (N = 4, 5 or 6) have considerably smaller oscillations, by a factor of ~5 
at −1% strain, than the (N = 4) rectangular spring and the half-integer (N = 4.5) tee-
shaped spring. 
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Figure 2.14. The helical strain and radial displacement at the outer surface of springs with 4 and 
4.5 turns as a function of helical distance (results from FEA).  
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Figure 2.15. The amplitude of the longitudinal strain oscillation at −1% and +0.5% mean strain 
at the outer surface of a Cu-Be tee-shaped spring as a function of the total number of turns in the 
spring (results from FEA). 
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Finite element analysis shows that the strain oscillations are related to the distortion 
of the envelope of the turns that occurs when the spring is twisted. For springs with 
integer numbers of turns, a correlation is observed between strain magnitude and radial 
displacement as a function of helical distance [see Figures 2.14(a) and (c)], although for 
springs with half-integer number of turns, there is no simple correlation [Figures 2.14(b) 
and (d)]. The behaviour is clearly quite complex, and, to our knowledge, an analytic 
description is not yet available. The smaller oscillations for the tee-shaped springs can be 
attributed to the greater torsional rigidity of the cross-section and hence smaller 
distortions. Figure 2.15 shows how the oscillation amplitude varies as a function of the 
total number of turns in the Cu-Be tee-shaped spring at +0.5% and −1.0% strain. It can be 
seen that for this type of spring an integer number of turns (4 or 5) is indeed the optimum 
number for minimising the oscillations.  

It was also found that the longitudinal oscillations are considerably larger when the 
spring material is in the plastic regime (presumably because the spring yields first at the 
peaks of the oscillations which therefore increase disproportionally). For example, a 
finite element model of a (brass) spring with an elastic limit of 0.4% (rather than 1.0% 
for Cu-Be) has oscillations that are larger by a factor of ~3 at −1% applied strain (see 
Table 2.6). Hence the difference between the experimental results and the FEA in Figure 
2.13 may be partly due to the copper-beryllium used for the spring having a lower elastic 
limit than the typical value at room temperature (0.9%).  

2.5 Discussion of spring design 

Our experimental and FEA results allow us to make some recommendations about 
optimum spring designs. The universal relations between superconducting properties and 
intrinsic strain for wires on different spring materials demonstrate that the thermal 
expansion of the spring only affects the behaviour of wires through a change in the 
parameter εM. However, it is important to use a spring material with a high elastic limit— 
such as Cu-Be (TH04 temper) or Ti-6Al-4V—given the requirement for a reversible 
(unique) relationship between angular displacement and strain, the deviations observed 
for the JC measurements on the stainless-steel spring, and the increase in the size of the 
longitudinal strain variations predicted by the FEA for springs in the plastic regime. We 
now prefer to use the titanium alloy, as it is routinely used for sample-holders in standard 
JC measurements8,9 and it has the highest elastic limit at 4.2 K of any engineering alloy 
(we have also used copper-beryllium, but the sensitivity to heat-treatment conditions and 
the toxicity of the beryllium means that some care is required when handling). Although 
Ti-6Al-4V cannot easily be soldered to or copper-plated directly, we have used a well-
established technique for nickel plating the spring77 prior to transferring and attaching the 
wire using copper-plating and soldering. 

The JC data demonstrate that it is necessary to use finite element analysis (or the 
loaded-beam equations) to relate the strain-gauge calibration data to the strain at the 
midpoint of the conductor. After applying the correction to obtain the strain at the middle 
of the wire, second-order effects due to the different strain gradients for the two spring 
geometries are not observed for our results. The magnitude of the strain gradient may be 
important for larger or different types of conductor, and can be reduced by using a spring 
with a radially thicker, tee-shaped cross-section (our optimised tee-shaped springs have 
strain gradients and correction factors of <3%). As the radial thickness of the spring is 
increased, the ratio of the strain at the inside of the spring to the strain at the outside 
increases in magnitude, reducing the strain range over which the spring remains elastic. 
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Walters et al. suggested maximising the elastic strain range by setting this ratio to be 
equal to −119. We have used an alternative approach in which the value of the inner/outer 
strain ratio is specified by the strain range over which measurements are required, and 
then the tee shape is optimised to minimise the strain gradient across the conductor. Our 
specific requirements are for detailed measurements to ±0.5% applied strain and hence 
for a spring material with an elastic limit of ~1% we use an inner/outer strain ratio of −2. 
To optimise the properties of the spring, the loaded-beam equations given by Walters et 
al. can be used (see Section 2.4.1.1), as these predict a radial-dependence for the strain in 
the turns that agrees well with the FEA19. The first stage of the process is the same as that 
described by Walters et al. and involves maximising the outer radius of the spring (given 
the available space), minimising the width at the outside of the tee (given the width of the 
conductor), and maximising the width at the inside of the tee (given the maximum pitch-
angle for the wire of ~5o44 and hence the turn pitch)19. The two parameters to be 
calculated are then the inner radius and the position of the ramped step (see Figure 2.1). 
For any given value of inner radius there is an optimum step position that minimises the 
neutral radius [calculated using Equation (0.4)] and hence minimises both the strain 
gradient across the conductor and the size of the inner/outer strain ratio [Equation (0.2)]. 
The optimum step position can be calculated at discrete values of inner radius using a 
spreadsheet solver/optimiser. Hence the optimum inner radius and ramped step position 
are uniquely determined once the inner/outer strain ratio is specified by the required 
elastic strain range.  

The geometry of the tee-shaped spring used in our measurements [see Figure 2.1(b)] 
was obtained using the method described above with an inner/outer strain ratio of −2. For 
this spring, the loaded-beam equations predict a strain gradient across a ∅0.81 mm wire 
of ±2.1% (FEA: ±2.9%) compared to the value of approximately ±6% that would be 
obtained using the approach of Walters et al. The reversibility of the critical current 
density and strain-gauge calibration data also imply that measurements can generally be 
carried out on a single cycle to a value of compressive strain beyond the predicted elastic 
regime (by a factor of ~2). In general, the availability of a larger bore diameter enables 
both a larger strain range and a smaller strain gradient across the conductor. 

The design should also consider the torque required to twist the spring, which can 
also be calculated using the loaded-beam equations, so that higher-strength shafts are 
used for springs with radially thicker turns19,42. The FEA results for the tee-shaped spring 
also show that the calibration factor is quite strongly dependent (~5%) on whether the 
height of the spring is able to change. Our probe is designed with a sliding keyway so 
that the change in height can occur freely (or, at least, reproducibly). 

Finite element analysis shows that the uniformity of the strain along the length of the 
wire varies quite considerably with spring material and geometry. These longitudinal 
strain variations can be large, but our FEA results show that they can be reduced to 
<0.5% by using a spring with an optimum integer number of turns (4 or 5). 

2.6 Conclusions 

Variable-strain critical current density data and finite element analysis results are 
presented for Nb3Sn wires on helical (Walters) springs of different materials and 
geometries. The strains produced by these springs can in principle be much more 
complex than those produced by axial pull techniques. For the Vac and LMI wires 
measured on different spring materials (Cu-Be, Ti-6Al-4V, brass, SS 316L), the critical 
current density, n-value, and effective upper critical field are universal functions of 



  23

intrinsic strain—deviations are observed for the stainless-steel spring which are attributed 
to plasticity. The experimental and modelling results demonstrate that the thermal strains 
due to the spring are predominantly axial in nature, so that the only effect on the 
behaviour of the wire is a change in the parameter εM, which depends systematically on 
the thermal expansion of the spring material. The variable-strain data obtained on 
different spring geometries show good agreement when the applied strain is calculated at 
the midpoint of the wire using strain-gauge calibration data corrected to account for the 
strain gradient across the wire (and the presence of the wire on the spring). The 
agreement is observed even though the transverse strain gradient for the rectangular-
shaped spring used in our measurements is considerably larger than for the tee-shaped 
spring. The correction factors can be obtained from FEA or analytical calculations. 
Experimental results show that the critical current density is uniform along the length of 
the wire typically to within ±2%. Finite element analysis shows that the variations in 
strain along the length of the wire vary considerably with spring material and geometry, 
but are generally less than ±2% for our measurements. The universal strain dependences 
observed for different types of helical spring provide good evidence that the intrinsic 
properties of the conductor can be accurately measured—the capacity for very high-field 
and high-sensitivity measurements is also demonstrated. Supplementing previous work 
by Walters et al., springs made with highly elastic materials (e.g. Ti-6Al-4V), optimised 
tee-shaped cross-sections, and optimum integer numbers of turns (e.g. 4 or 5) are shown 
to give the best performance in relation to the transverse and longitudinal strain 
uniformity in the wire. 

 



  24

3 Equation Chapter (Next) Section 1The scaling law 
for the strain-dependence of the critical current 
density in the Vac and LMI Nb3Sn superconducting 
wires 

3.1 Introduction to scaling laws 

( )C , ,J B T ε data are parameterised using scaling laws, which allow the interpolation 
and extrapolation of the measured data for interlaboratory comparisons and magnet 
design. A number of different empirical scaling laws have been proposed to describe the 
magnetic field, temperature, and axial strain-dependence of JC in Nb3Sn wires. These 
scaling laws generally incorporate aspects of the temperature scaling law of Fietz and 
Webb78 (with subsequent refinements79) and the strain scaling law of Ekin1. The latter 
followed from the well-known measurements1 of JC for a number of technological Nb3Sn 
wires as a function of magnetic field and axial strain at 4.2 K (previous variable-strain 
measurements were also reported by a number of authors20,23,80-84). Both scaling laws 
relate changes in JC to changes in the upper critical field (BC2), although a fundamental 
inconsistency implies that an additional strain-dependent parameter is required in order to 
unify the two laws16,23. Summers et al.85 subsequently proposed such a unified scaling 
law, which also includes Ekin’s universal relation for the normalised values of 

( )C2 4.2 K,B ε  for binary Nb3Sn wires, and a power-law relationship between 

( )C2 4.2 K,B ε  and ( )CT ε  (the critical temperature)1. The Summers Scaling Law 
parameterised the data available at the time quite accurately (although detailed variable-
temperature-and-strain JC data had not yet been reported) and was subsequently adopted 
as the standard formulae for large-scale magnet design86. Although the strains in magnets 
are three-dimensional in nature, there is now reasonable consensus (despite some 
conflicting results in the literature on the effect of transverse stress) that in the reversible 
strain regime, uniaxial (deviatoric) strain—whether applied in the axial or transverse 
direction—is the most important strain component: its effects in Nb3Sn are 
approximately an order-of-magnitude larger than hydrostatic strain70,71,87-90. 

More recently a number of laboratories have succeeded in obtaining ( )C , ,J B T ε  
data, and various alternative scaling laws have been proposed8,14,16,28,70,91. In Durham, a 
general scaling law for ( )C , ,J B T ε , the Interpolative Scaling Law (ISL), has been shown 
to allow very accurate parameterisations of comprehensive data for Nb3Al and Nb3Sn 
wires28,91. The Interpolative Scaling Law uses general polynomial functions for the 
strain-dependent parameters, in contrast to the Summers Scaling Law. It therefore 
contains a relatively large number of free parameters and cannot generally be used to 
extrapolate beyond the measured regions of parameter space (e.g. the measured strain 
range). It is desirable, particularly for engineering purposes, to develop a scaling law 
with fewer free parameters that can be determined from a smaller ( )C , ,J B T ε  dataset, 
allowing accurate predictions for JC to be made in other regions of parameter space. In 
this section, we develop such a scaling law based on a theoretical analysis of the effect of 
strain using microscopic theory and a review of the extensive experimental data now 
available. In particular, we use microscopic theory2,71,92-97 to analyse the relationship 
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between ( )C2 0,B ε  and ( )CT ε  (and the other strain-dependent parameters) and to help 
motivate the introduction of modified versions of the empirical power-law relations 
currently used14,85. A comparison of our theoretical and experimental results and the 
intension to derive a simplified scaling law means that we must address the question of 
whether the variations of the superconducting properties of Nb3Sn with uniaxial strain 
are predominantly due to changes in the electronic or the phononic properties of the 
material2,71. 
The section is structured as follows: Sections 3.2 and 3.3 contain the main experimental 
results. Section 3.2 describes consistency tests and interlaboratory comparisons, and 
hence addresses how general and accurate the data are. Section 3.3 presents the 

( )C , ,J B T ε  data for the EM-LMI and Vac wires. These data are parameterised using the 
Interpolative Scaling Law and comparisons are made with alternative scaling laws. In 
Section 3.4, the observed relationships between ( )C2 0B  and TC are examined using 
microscopic theory. Finally, in Section 3.5, a new simplified Interpolative Scaling Law is 
presented. Its accuracy in parameterising complete datasets and extrapolating from partial 
datasets is demonstrated. The appendix provides a parameterisation of JC data generated 
in Durham using this simplified law.   
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Figure 3.1. Interlaboratory comparisons for the EM-LMI wire: (a) Engineering critical current 
density (and critical current) at 10 µVm−1 as a function of magnetic field at 4.2 K and zero 
applied strain. (b) Engineering critical current density as a function of applied strain at 4.2 K, and 
13 and 15 T. The data were obtained in Durham on Cu-Be and Ti-6Al-4V springs and in other 
laboratories on Ti-6Al-4V and Inconel-600 sample holders7,9,13. 



  26

 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
0.0

0.2

0.4

0.6

0.8

1.0

EC = 10 µVm−1

   
 Durham
 Twente
 FZK

ICM
111 A
100 A
96 A

εM
0.34%
0.09%
0.76%

  
Cu-Be
Ti-6Al-4V
SS CICCN

or
m

al
is

ed
 C

rit
ic

al
 C

ur
re

nt

 

Vac Wire
B = 13 T, T = 4.2 K

(c)

(b)

(a)

EC = 10 µVm−1

   
 Durham
 Twente
 FZK

ICM
126 A
139 A
123 A

εM
0.28%
0.60%
0.7%

  
Cu-Be
Brass
SS CICCN

or
m

al
is

ed
 C

rit
ic

al
 C

ur
re

nt

EM-LMI Wire
B = 13 T, T = 4.2 K

12 T

 N
or

m
al

is
ed

 C
rit

ic
al

 C
ur

re
nt

 Intrinsic Strain (%)

EC = 10 µVm−1

   
 Durham
 Twente
 Geneva

ICM
120 A
107 A
111 A

εM
0.29%
0.06%
(0.275%)

  
Cu-Be
Ti-6Al-4V
Ti-6Al-4V

 

Furukawa Wire
B = 13 T, T = 4.2 K

 

 

 

 

 
Figure 3.2. Interlaboratory comparisons of the normalised critical current as a function of 
intrinsic strain at 4.2 K and 13 T for (a) EM-LMI, (b) Vac and (c) Furukawa ITER Nb3Sn wires. 
Critical currents were measured at 10 µVm−1 or calculated at 10 µVm−1 from measurements 
performed at higher electric-field criteria using n-values measured in Durham (the error bars 
show the effect of these calculations on the normalised values). The legends show the spring 
material (or the CICC jacket material), the value of applied strain where the critical current is a 
maximum (εM), and the value of the critical current at this maximum (ICM). Inset (c): comparison 
of Durham and Twente Pacman data at 12 T (same axes and symbols as main graph)8,10,11,13,18,98. 
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3.2  Consistency tests and interlaboratory comparisons 

We will begin by presenting the results of various consistency tests and 
interlaboratory comparisons. These are vital given the complexities involved in making 
such measurements and the importance of the data for the ITER project, and enable the 
accuracy of the data to be addressed prior to comparison with theory.  

3.2.1 Comparisons with other JC data for as-prepared EM-LMI wires  

Figure 3.1(a) shows the results of various measurements of the engineering critical 
current density of as-prepared EM-LMI wires as a function of magnetic field at 
4.2 K7,9,13. In these (zero applied strain) measurements, the strain-state of the wire is 
determined primarily by the thermal expansion of the sample holder. It can be seen that 
the data from all of the laboratories agree to within ±2.5% for measurements on the same 
titanium alloy sample holder (as well as for an Inconel 600 sample holder) and hence 
show similar variations to those observed in the VAMAS international round-robin 
measurements99. Figure 3.1(b) shows our JC data measured as a function of applied strain 
(εA) at 4.2 K for EM-LMI wires mounted on a Cu-Be spring and a Ti-6Al-4V spring. 
These data superimpose to within ~5% if plotted as a function of intrinsic strain (ε I), 
where intrinsic strain is defined relative to the applied strain where JC is a maximum 
(εM): 

 I A Mε ε ε= − . (1.1) 

The values of εM are ~0.28% for the Cu-Be spring and ~0.10% for the Ti-6Al-4V 
spring, which are consistent with the thermal strain on the filaments due to the cool-down 
from 293 K (where the wire is copper-plated to the spring) to 4.2 K being determined by 
the thermal expansion of the spring material: −0.32% for Cu-Be and −0.17% for 
Ti-6Al-4V100. Therefore, as long as both the applied strains and the thermal strains are 
properly considered, the JC datasets obtained on springs of different materials and 
geometry are consistent (see Section 2).  

3.2.2 Comparisons of variable-strain JC data for the EM-LMI, Vac, and 
Furukawa ITER wires 

Interlaboratory comparisons of variable-strain JC data for the EM-LMI and Vac 
ITER wires and cables are shown in Figure 3.2, where the normalised critical current at 
4.2 K and 13 T is plotted as a function of intrinsic strain. Data are also shown for a 
Furukawa ITER Nb3Sn wire11. The measurements in other laboratories were performed 
on individual wires at the University of Twente using different types of “bending 
spring”8, at the University of Geneva using a helical spring18, and on cable-in-conduit 
conductors at Forschungszentrum Karlsruhe (FZK) using an “axial pull” system10. Note 
that as JC was measured at higher electric-field criteria at Twente (500 µVm−1) and FZK 
(100 µVm−1), we have calculated JC at 10 µVm −1 from these data using n-values 
measured in Durham—n decreases by a factor of ~2 from 0% to −0.7% intrinsic strain so 
that the strain-dependence of the normalised critical current is larger at lower electric-
field criteria. It can be seen that the agreement between the normalised critical current 
data from different laboratories is generally good. The biggest deviations occur for the 
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cable-in-conduit conductors at I 0ε , where the CICC data are less strain-sensitive. The 
normalised critical current data for measurements on wires agree to within ±6% for the 
EM-LMI wire ( I 0.7%ε = − ), ±8% for the Vac wire ( I 0.7%ε = − ), and ±2.5% for the 
Furukawa wire ( I 0.35%ε = + ). We have particular confidence in our EM-LMI data 
because six different samples on springs of various materials and geometries all show a 
similar intrinsic strain-dependence for JC to within ±5%, and the reversibility of JC over a 
number of strain cycles (described below) demonstrates that the samples were not 
damaged. For all of the wires, there are variations of approximately ±7% between 
different laboratories for the value of the critical current at ε I = 0, although some of these 
variations may be due to the different billets measured.  

In general, obtaining reliable variable-strain JC data presents a difficult experimental 
challenge. In addition to the standard good practice required for critical current 
measurements63,99, there are a number of issues to be considered: damage to any part of 
the wire during mounting may have a considerable effect on the strain-dependence of JC; 
the experimental set-up should preferably involve relatively long lengths of wire in a 
homogeneous strain-state beyond the measurement regions, in order to avoid current-
transfer voltages1,17; and the sample holder (if used) should not be strained beyond its 
elastic limit. Plasticity of the component parts of the superconducting wires can also play 
a significant role in interlaboratory comparisons. In 3, measurements on EM-LMI and 
Vac wires demonstrated that extensive strain cycling can cause JC to increase by up to 
~7% at 4.2 K, 12 T, and I 0ε = , without damaging the superconducting filaments12. 
These changes in JC were attributed to changes in the radial stress on the filaments due to 
the plastic deformation of the matrix. In the present measurements, JC for the EM-LMI 
wire (sample 1) at zero applied strain increased by ~3% after the cycle 0% → 
0.49% → −0.48% → 0%, and JC at −0.48% applied strain decreased by ~4% after the 
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Figure 3.3. Engineering critical current density (and critical current) of the EM-LMI 
wire as a function of applied strain at 12 T and at 4.2 K and 0.5 K increments between 5 
and 10 K. The symbols show the measured data, the solid lines the Interpolative Scaling 
Law, and the dotted line the Summers Scaling Law [obtained by fitting the ( )C , ,J B T ε  
data for Iε  < 0.22%]. 
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cycle −0.48% → 0.61% → −0.48%. Hence additional variations in the strain-dependence 
of JC of the order of a few percent are to be expected when measurements at different 
laboratories involve multiple strain cycles (thermal or mechanical) that strain the wire 
beyond the elastic limit of the component materials (~0.1%). From a comparison of the 
variable-strain datasets available, we conclude that variations of typically ±5% in the 
strain-dependence of the normalised JC can in principle be achieved between different 
laboratories. 

3.3 JC(B,T,ε) scaling laws 

3.3.1 Interpolative Scaling Law for JC(B,T,ε) 

The ( )C , ,J B T ε  data can be parameterised using the Interpolative Scaling Law 
(ISL)91 in which the volume pinning force ( P CF J B= ) is given by101: 

 
( ) ( )

( )
( )

*
C2

P *
1

,
1

,

n

qp
m

A B T
F b b

T

ε ε

κ ε

′   = −
  

, (1.2) 

where ( )*
C2 ,b B B T ε=  and ( )*

C2 ,B T ε  is the effective upper critical field which is 
parameterised by: 

 ( ) ( )( )* *
C2 C2, 0, 1B T B tνε ε= − . (1.3) 

Here, ( )*
Ct T T ε= and ( )*

CT ε  is the effective critical temperature. ( )*
1 ,Tκ ε is the 

Ginzburg–Landau parameter given by91: 
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Figure 3.4. Engineering critical current density (and critical current) of the EM-LMI wire as a 
function of magnetic field at 4.2 K and at different applied strains between 0.24% and −0.48%. 
The symbols show the measured data, and the lines the Interpolative Scaling Law. 
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 ( ) ( ) ( )
( ) ( )( )

1 2 *
C2*

1 1 21 2 * 2
0 C

1.03 ,
,

1

B T
T

T t

η ε ε
κ ε

µ γ ε ε

  =
−  

, (1.4) 

where ( ) ( ) ( )2
B C ln ln B C1 12.2 ln 3k T k Tη ε ω ω= −  is a strong-coupling correction to the 

BCS value of the ratio ( ) 22
0 C C 0T Bµ γ     (ω ln is an average phonon frequency) and ( )γ ε  

is the electronic specific heat coefficient91,96,102. Combining Equations (1.2) and (1.4), 
and incorporating ( )A ε′ , ( )η ε , and ( )γ ε  into a single strain-dependent parameter 

( )A ε  results in the following expression for ( )C , ,J B T ε : 

 ( ) ( ) ( )( ) ( ) ( )1* 2 * 1
C C C2, , 1 , 1

m n m qpJ B T A T t B T b bε ε ε ε
− − −   = − −   . (1.5) 

The scaling law therefore involves the exponents m, n, p, q, and ν, and the 
parameters ( )A ε , ( )*

CT ε , and ( )*
C2 0,B ε . These strain-dependent parameters are 

constrained to be fourth-order polynomial functions of applied strain with a stationary 
point (e.g. maximum) at a common value, εM. Similarly to previous work, the exponent 
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Figure 3.5. Engineering critical current density (and critical current) of the Vac wire as a
function of applied strain at integer magnetic fields between 5 and 23 T and at 4.2, 8, and 12 K. 
The symbols show the measured data and the solid lines the Interpolative Scaling Law. 
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m is set to 2, implying the relation ( )2*
C 11J κ∝ 28,79. The Interpolative Scaling Law 

enables extremely accurate parameterisations of the JC data over the large ranges of 
magnetic field, temperature, and strain that were investigated, with RMS differences 
between the measured and calculated values of 1.40 A for the EM-LMI wire and 2.05 A 
for the Vac wire. The parameterisations are compared graphically with the measured 

( )C , ,J B T ε  in Figures 3.3−3.5. 
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Figure 3.6. Kramer plots for the EM-LMI wire at −0.48% applied strain and at 4.2 K and 1 K 
increments between 5 and 10 K. The symbols show the measured data, and the lines the best 
straight-line fits. 

 

 

0 5 10 15
0

5

10

15

20

εA = −0.48%

EM-LMI Wire

 From Kramer plots
 0.5 A, 10µVm−1

 BC2(0)(1−tν)
 Maki-de Gennes
 Summers

 U
pp

er
 C

rit
ic

al
 F

ie
ld

 (T
)

 

 Temperature (K)

8 10 12 14 16
0

50

100

150 0.5 A

0 T

12 T

 Temperature (K)

 

 

 E
le

ct
ric

 F
ie

ld
 (µ

Vm
−1

)

 
Figure 3.7. Upper critical field as a function of temperature for the EM-LMI wire at −0.48% 
applied strain (i.e. close to the operating strain of the TFMC4). The closed symbols show *

C2B  
obtained from Kramer plots (see Figure 3.6) and the lines show various fits to these data. The 
open symbols show the values of C2Bρ  determined at 0.5 A and 10 µVm−1 from the E−T data 
shown in the inset. 
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 For the EM-LMI wire, the optimum values of p (0.474) and q (1.95) are close to the 
commonly-used “Kramer values” (p = 1 2  and q = 2)64,79,101. Figure 3.6 shows Kramer 
plots ( 1 2 1 4

CJ B versus B) for the EM-LMI wire at −0.48% applied strain: the good straight-
line fits also demonstrate that the magnetic field dependence of JC can be parameterised 
with p = 1 2  and q = 2 (at least for IC > 1 A). For the Vac wire, however, the optimum 
values of p (0.468) and q (1.48) are further from the Kramer values, and setting p = 1 2  
and q = 2 results in a ~25% increase in the RMS error for the best fit (from 2.05 A to 

 

-1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6
0.7

0.8

0.9

1.0

-1.5 -1.2 -0.9 -0.6 -0.3 0.0 0.3 0.6
0.5

0.6

0.7

0.8

0.9

1.0

(b)

 OST (ρ)
 OST (ISL)
 Vac (ISL)
 EM-LMI (ISL)
 w = 2.2

Nb3Sn

 N
or

m
. E

ffe
ct

iv
e 

C
rit

ic
al

 T
em

pe
ra

tu
re

 

 Intrinsic Strain (%)

(a)

 Low-BC2
 High-BC2
 OST
 Vac
 EM-LMI
 Furukawa
 Polynomial Fit

Nb
3
Sn

 N
or

m
. E

ffe
ct

iv
e 

U
pp

er
 C

rit
ic

al
 F

ie
ld

 a
t T

 =
 0

 

 Intrinsic Strain (%)

 
Figure 3.8. (a) The normalised effective upper critical field at T = 0 and (b) normalised effective 
critical temperature as a function of intrinsic strain for different Nb3Sn wires. In (a), the symbols 
show data for wires measured in Durham and the solid line shows a universal fit to these data, 
while the dotted line is for previous measurements on low- ( )*

C2 0B  wires1 and the dashed line for 
high- ( )*

C2 0B  wires2. For the Furukawa data and the dashed and dotted lines, ( )*
C2 0B was 

calculated from the ( )*
C2 4.2 KB  data using Equations (1.3) and (1.9). In (b), the solid line is

calculated using the universal fit to the normalised ( )*
C2 0B  data and the power-law relation with

w = 2.2, while the dotted line shows ( )C IT ρ ε data obtained from resistivity measurements for the 
OST wire. 
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2.60 A) and unphysically high values for the effective upper critical field, with 
( )*

C2 I0, 0 35 TB ε = ≈ . 
Figure 3.7 shows the upper critical field as a function of temperature for the 

EM-LMI wire at −0.48% applied strain. It can be seen that Equation (1.3) provides a 
good fit to the ( )*

C2 ,B T ε  data obtained from the Kramer plots in Figure 3.6 (with ν ≈ 1.5 
in this case). Two other fits to these data are also shown: the Maki-de Gennes relation for 
a dirty superconductor with no Pauli paramagnetic limiting92,103,104, which fits the data 
well, and the Summers Scaling Law relation [Equation (4.7)], which is somewhat less 
accurate. Also shown in Figure 3.7 are the values of upper critical field [ ( )C2 ,B Tρ ε ] 
determined from the E−T characteristics for a current of 0.5 A and an electric-field 
criterion of 10 µVm−1 (5−20% of the transition height). Note that the 
equivalence between E−T and E−J data means that these values of ( )C2 ,B Tρ ε  are also the 
values of B where JC at 10 µVm−1 is 0.5 A. These low-current-density values are ~0.4 K 
higher for B ≥ 4 T and ~0.8 K higher for B = 0 than the values obtained from the Kramer 
plots [and Equation (1.3)]. At this value of strain, the measured JC goes to zero less 
rapidly than the Kramer lines, with a “tail” that is usually associated with the distribution 
of TC and BC2 in technological wires68,91. Determining TC from measurements at very low 
current densities ( 0B ≈ ) provides a method for assessing the strain-state of the model 
coils at cryogenic temperatures, although it must be noted that the measured value of 

( )C 0 15.5 KT Bρ = =  at −0.76% intrinsic strain differs quite considerably from the 

scaling-law parameter *
CT  (= 14.6 K). Self-field effects may also be important in such 

measurements. 
Figure 3.8(a) shows normalised values of ( )*

C2 I0,B ε  for the EM-LMI and Vac wires, 
as well as additional data for the Furukawa wire11 and an OST wire91. It can be seen that 

( )*
C2 I0,B ε  for these Nb3Sn wires follows an approximately universal relation, which is 

also largely independent of the choice of p and q1. Hence the higher strain-sensitivity of 
JC for the EM-LMI wire in relation to the other wires (see Figure 3.2) is due to lower 
absolute values of ( )*

C2 0B and *
CT  at zero intrinsic strain. Figure 3.8(a) also includes two 

different datasets obtained from the literature, represented by best-fit lines1,2. These 
values were calculated from the ( )*

C2 I4.2 K,B ε  data using Equations (1.3) and (4.9), 

although the differences between the normalised values of *
C2B  at T = 0 and 4.2 K are not 

large (the Furukawa values were also calculated in this way)85. The less strain-sensitive 
line taken from Ekin’s well-known work represents relatively clean Nb3Sn with low 
values of ( )*

C2 I0, 0B ε =  of ~24 T1, while the more strain-sensitive line is for Nb3Sn wires 

with Ta additions and higher values of ( )*
C2 I0, 0B ε = 2. The ITER-candidate wires and 

other recently-developed Nb3Sn wires have ternary additions of Ti (EM-LMI) or Ta 
(Vac) and relatively high values of ( )*

C2 I0, 0B ε = : typically 28−30 T. Hence the better 
agreement with the previous ternary data rather than the binary data correlates with the 
higher values of ( )*

C2 I0, 0B ε = . The differences between binary and ternary Nb3Sn are 
also predicted by microscopic theory (see Section 3.4), but have been somewhat 
neglected in the past85.  
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Figure 3.8(b) shows normalised values of ( )*
C IT ε  for the EM-LMI, Vac, and OST 

wires: it can be seen that there is more variation between the different wires, although for 
the two ITER-candidate wires the differences are only ~4%. Also shown in Figure 3.8(b) 
are ( )C IT ρ ε  data obtained from resistivity measurements for the OST wire, which can be 
seen to be less strain-sensitive than the scaling-law values. This behaviour is observed for 
the ( )C2 ,B Tρ ε  and ( )C IT ρ ε  data for all of the wires we have investigated, and can be 
related to strain (and temperature) variations in the low-current-density tails discussed 
above. A reasonable interpretation of the difference is that the scaling law values of *

C2B  
(and *

CT ) are characteristic values for the bulk of the material, while the resistivity values 
give the maxima of the distributions in BC2 (and TC)1,91,105. 

3.3.2 Comparison with Summers Scaling Law 

The Summers Scaling Law for ( )C , ,J B T ε  involves the following relations1,85,86: 

 ( ) ( )( ) ( ) ( )2 1 2 22 * 1 2
C C2, , 1 0, 1J B T C t B b bε ε ε

− − = − −   (1.6) 

 ( ) ( )( ) ( )* * 2 2
C2 C2, 0, 1 1 0.31 1 1.77 lnB T B t t tε ε  = − − −   (1.7) 

 ( )
( )

( )
( )

( )
( )

3 2* *
1.7C2 I C I I

I* *
C2 C

0,
1

0,0 0 0
B T C

a
B T C

ε ε ε
ε

   
= = = −   

   
, (1.8) 

with a = 1250 for ε I > 0 and a = 900 for ε I < 0. The scaling law is commonly used for 
ITER-candidate conductors4,5,9,86, but we have found that it predicts a weaker strain-
dependence for JC than is observed and hence cannot parameterise ternary Nb3Sn data 
accurately—typical RMS differences are ~10 A. Figure 3.3 explicitly shows a 
comparison between the measured data for the EM-LMI wire and the values for 

( )C I12 T,4.2 K,J ε  calculated using the Summers Scaling Law with the free parameters 

obtained by fitting the data for Iε  < 0.22%; similar disagreement is also observed for 
the Vac wire4,5. 

We can improve the accuracy of the Summers fits over a limited strain range 
(ε I ≥ −0.8%) by leaving a as a free parameter: for the EM-LMI wire, the best-fit is 
obtained with a = 1840 (ε I > 0) and 1160 (ε I < 0) and has an RMS error of 2.4 A, while 
for the Vac wire, values of a = 1900 and 1160, and an RMS error of 2.4 A are obtained. 
These values of a are comparable with previous values for high- ( )*

C2 0B  Nb3Sn [a = 1690 
for ε I > 0 and 1210 for ε I < 0, see Figure 3.8(a)]2. However, Figure 3.8(a) shows that, 
even for optimum values of a, Equation (1.8) begins to deviate significantly from the 
measured ( )C2 I0,B ε  at a compressive strain of ε I ≈ −0.7% (close to the strain at which 
the TFMC operates). Note, however, that Equation (1.8) is based upon measurements 
that were only performed at tensile applied strains corresponding to ε I ≥ −0.5%1. The 
data in this section have second-derivatives (with respect to ε I) of both ( )C2 I0,B ε  

[Figure 3.8(a)] and ( )C I12 T,4.2 K,J ε  (Figures 3.3 and 3.5) that change sign at 
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ε I ≈ −0.7%: behaviour which cannot be reproduced by Equation (1.8). Hence we will set 
aside this function for the strain-dependence as polynomial functions seem preferable—
especially if large strain ranges are being investigated.  

3.4 Relationship between strain-dependent superconducting 
parameters 

In this section, we will consider the relationship between ( )C2 I0,B ε  and ( )C IT ε , 
presenting our experimental data for a number of wires and analysing the relationship 
using microscopic theory. For the analysis we adopt a similar approach to Welch71, using 
Eliashberg theory (the Allen and Dynes equation94,95) and Ginzburg–Landau–Abrikosov–
Gor’kov theory92,96,97 to provide a better understanding of the empirical scaling-law 
relations, and the microscopic mechanisms responsible for the strain effects in A15 
(Nb3Sn and Nb3Al) superconducting wires. 
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Figure 3.9. A log–log plot of upper critical field at T = 0 versus critical temperature for different 
A15 wires: (a) data from resistivity and other measurements; (b) effective values obtained by
fitting the JC data using the Interpolative Scaling Law. The solid lines show the best power-law 
fits and the legend shows the values of the exponent w. Except for the Vac wire, the data have 
been shifted horizontally for clarity (the vertical dashed lines show TC = 16 K for each wire). 
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3.4.1 Power-law relationship and experimental data 

A power-law relationship between ( )C2 I0,B ε  and ( )C IT ε  was first proposed by Ekin 
(although originally in terms of the upper critical field at 4.2 K)1:  

 ( )
( )

( )
( )

C2 I C I

C2 I C I

0,
0, 0 0

w
B T

B T
ε ε

ε ε
 

=   = = 
. (1.9) 

The exponent w ≈ 3 was estimated using ( )*
C2 I4.2 K,B ε  data obtained from JC 

measurements on binary Nb3Sn wires1 and ( )C IT χ ε  data from susceptibility 
measurements on a different set of binary Nb3Sn wires20. The power-law with w = 3 is 
currently used in a number of scaling laws for ( )C , ,J B T ε 14,85. The original (low- *

C2B ) 

data are shown on a log–log plot in Figure 3.9(a), with ( )*
C2 I0,B ε  calculated from the 

( )*
C2 I4.2 K,B ε  and ( )C IT χ ε  data using the Maki-de Gennes relation: the best fit gives 

w = 3.6 (the value is 3.8 if the upper critical field data at 4.2 K are used directly). 
However, assuming that ( )C IT χ ε  and ( )C IT ρ ε  behave similarly, the different strain-
dependences observed for our scaling-law and resistivity data imply that artificially high 
values of w may be obtained from combining *

C2B  and CT χ  data. Also shown in Figure 
3.9(a) are values obtained from low-current-density measurements of ( )C2 I,B Tρ ε  for the 
Vac Nb3Sn wire (I = 0.5 A), the OST Nb3Sn wire (30 mA)91, and a Sumitomo Nb3Al 
wire (30 mA)28, where Equation (1.3) was used to extrapolate to T = 0 and TC. It can be 
seen that for these A15 wires, the values of w are all between ~1.9 and ~2.5. In addition, 
Figure 3.9(b) shows the values of ( )*

C2 I0,B ε  and ( )*
C IT ε  obtained using the Interpolative 

Scaling Law from the comprehensive ( )C , ,J B T ε  datasets available for four different 
A15 wires. These are also consistent with the power law and give similar values of w. For 
Nb3Sn wires characterised by high values of ( )*

C2 I0, 0B ε =  (approximately 28–30 T), the 
values of w ≤ 2.5 are therefore similar for both resistivity and scaling-law data, despite 
the different strain-dependences observed, and are significantly lower than the values (w 
≥ 3) obtained for binary, low- *

C2B  (~24 T) Nb3Sn wires. 

Table 3.1. Microscopic parameters determined from tunnelling measurements on Nb3Sn106 and 
Nb3Al (23 at. % Al)107. Also shown are the values of TC calculated using Equation (4.10), and the 
values of *µ  required for Equation (4.10) to give the measured values of TC (shown in brackets). 
 

 Nb3Sn Nb3Al 

ωln (meV) 10.8 9.5 

ω2 (meV) 15.0 13.5 

λ 1.8 ± 0.15 1.7 ± 0.05 
*µ  0.16 ± 0.03 (0.14) 0.15 ± 0.02 (0.10) 

TC (K) calc. (meas.) 16.2 (17.5) 13.9 (16.4) 
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3.4.2 Analysis using microscopic theory 
The Allen and Dynes equation gives the critical temperature of strongly-coupled 

superconductors in terms of various microscopic parameters94,95: 

 ( )1 2 ln
B C

1.04 1
exp

1.20 0.62
f fk T

λω
λ µ λµ∗ ∗

+ 
= − − − 

, (1.10) 

where ω ln is a weighted logarithmically-averaged phonon frequency, λ is the electron-
phonon coupling parameter, *µ  is the effective Coulomb-repulsion parameter, and f1 and 
f2 are correction factors of order unity94. The electron-phonon coupling parameter is 
related to the bare electronic density of states at the Fermi energy ( )0N  and a weighted 
RMS phonon frequency ω2 by95: 

 
( ) 2

2
2

0N I
M

λ
ω

= , (1.11) 

where 2I  is the average over the Fermi surface of the electron-phonon matrix element 

squared and M is the average ionic mass. The electronic specific heat coefficient γ is 
related to ( )0N  and λ by95: 

 ( )( )2 22
B3 0 1k Nγ π λ= + . (1.12) 

The parameters ω ln, ω2, λ, and *µ  determined from tunnelling measurements on 
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Figure 3.10. Calculated microscopic parameters for Nb3Sn as a function of critical temperature, 
with all quantities normalised to their values at zero intrinsic strain. Square symbols: ω ln and γ
calculated assuming constant ( )0N ; round symbols: ( )0N  and γ calculated assuming constant 
ω ln. The maximum reduction in critical temperature (23%) corresponds to the measured reduction
for the Vac wire at −1.55% intrinsic strain. 
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Nb3Sn106 and off-stoichiometric Nb3Al107 are shown in Table 3.1. In the analysis 
described below, we will use *µ  as a free parameter to fit the measured zero-intrinsic-
strain values of TC, which can generally be achieved with relatively small changes in *µ  
(see Table 3.1)96. We will make the assumption that the variations of *µ  or 2I  with 
strain are considerably less important than the other parameters, and hence they can be 
considered as constants. We will also assume that the strain-dependence of the 
normalised average phonon frequencies (ω ln and ω2) is the same90.  

The variation of TC with uniaxial strain can be related to variations in the average 
phonon frequencies and/or variations in the bare electronic density of states at the Fermi 
energy. Due to a lack of detailed information in the literature about the uniaxial strain-
dependence of these parameters, we will begin by considering the two extreme cases: 
firstly that the strain-dependence of TC is entirely due to the strain-dependence of the 
average phonon frequencies, and secondly that strain only affects electronic properties 
[i.e. ( )0N ]. For Nb3Sn, Figure 3.10 shows how the various parameters depend on TC in 
these two cases: in the first case, ω ln increases approximately linearly with decreasing TC 
and, in the second case, ( )0N  decreases approximately linearly with decreasing TC. In 
both cases, the magnitude of the change is ~20% for a decrease in TC of 23%, 
corresponding to ε I = −1.55% for the Vac wire. The data shown in Figure 3.10 are 
calculated for Nb3Sn with ( )C I 0 17.5 KT ε = =  (Vac wire), but the relationships between 
the reduced parameters and the reduced critical temperature are insensitive (to within 
~1%) to quite large variations in ( )C I 0T ε =  (~1 K). These relationships are also similar 
(to within ~1%) for Nb3Al, although the critical temperature of Nb3Al is a factor of ~3 
less sensitive to uniaxial strain28. 

The upper critical field at T = 0 can be calculated using the following 
expression92,96,97: 

 
( ) ( ) ( ) ( )

( )
C2

11 2 *
C2 0 tr tr0

237 6
C C n

0 0.973 0,

7.30 10 2.78 10

BB R

T S T

µ η κ λ λ

γ γ ρ

−
=   

 × × + × 

, (1.13) 

where ( )C2 0Bη is a strong-coupling correction of order unity96, κ* is the  

reduced temperature-dependent Ginzburg–Landau parameter [ ( )* 0,0κ  = 1.26 and 

( )* 0,κ ∞  = 1.20], ( )( ) 1
tr tr1R λ λ −+  is the Gor’kov function [ ( )0R  = 1 and 

( )R ∞  = 1.17], λ tr is the reduced mean collision frequency given by97: 

 ( )* 32 2
tr 0 n Ctr0.882 3.81 10l S Tλ ξ ρ γ−= = × , (1.14) 

*
0ξ is the renormalised BCS coherence length, ltr is the electron mean free path, S is the 

Fermi surface area, and ρn is the low-temperature normal-state resistivity. 
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Both S and ρn are expected to be largely independent of uniaxial strain, and are 
considered as constants with S = (1.7 ± 0.7) × 1021 m2 for Nb3Sn97 and 
(1.8 ± 0.7) × 1021 m2 for Nb3Al108. For λ tr  1 (the “clean limit”), the first term in the 

square brackets in Equation (1.13) dominates and ( ) ( )2
C2 C0B Tγ∝  whereas for λ tr 1 

(the “dirty limit”), the second term dominates and ( )C2 C0B Tγ∝ . For intermediate values 

of λ tr, ( )C2 0B  is approximately proportional to ( )C
vTγ , where the exponent v depends 

only on λ tr and has a value between ~1 and ~2. Analysis of data for monofilamentary 
bronze-route Nb3Sn wires109 shows that ( )tr I 0 3 2.5λ ε ≈ = ±  for materials with tertiary 
additions (Ti, Ta) and optimal upper critical fields, which are similar to the technological 
wires that we have measured (the uncertainty in λ tr given here is calculated from the 
uncertainty in S). By setting ( )tr I 0 3λ ε = = , the variation of ( )C2 0B  can be calculated 

using Equations (1.13) and (1.14), with ( )I 0γ ε =  and ρn calculated from the measured 

value of ( )C2 0B  at zero intrinsic strain [for the Vac wire with ( )C2 I0, 0 27.6 TB ε = = , we 

get values consistent with the literature97, ρn = 41 µΩcm and ( )I 0 860γ ε = =  Jm−3K−2, 

although the conclusions given below are independent of the value of ( )C2 0,0B ]. 

Figure 3.11 shows a normalised log–log plot of the calculated values of ( )C2 I0,B ε  

as a function of ( )C IT ε  for Nb3Sn. It can be seen that the relationship between ( )C2 0B  
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Figure 3.11. Log–log plot of the calculated upper critical field at T = 0 versus critical 
temperature for Nb3Sn, with both quantities normalised to their values at zero intrinsic strain. 
Two cases are considered: (a) ( )0N  is constant, and ω ln and ω2 vary with uniaxial strain, and (b) 

ω ln and ω2 are constant, and ( )0N  varies with strain. The symbols are for ( )tr I 0 3λ ε = = , the 

error bars for ( )tr I 0 5.5λ ε = =  and 1 at their extrema, and the dotted and dashed lines for 

( )tr I 0λ ε = = ∞  (extreme dirty limit). The maximum reduction in critical temperature (23%)
corresponds to the measured reduction for the Vac wire at −1.55% intrinsic strain. 
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and TC is quite accurately described by a power law [Equation (1.9)] with, for 
( )tr I 0 3λ ε = = , the exponent w = 2.4 for the case where only ω ln varies with uniaxial 

strain, and w = 3.0 for the case where only ( )0N  varies with strain. These values are for 

fits over the range ( ) ( )C I C0.77 0 1T Tε≤ ≤ , which is relevant for comparison with our 
experimental data in Figure 3.9 although w can vary depending on the exact temperature 
range chosen by about ±0.1. The deviations from the power law are such that w is larger 
(by ≤ 0.6) closer to ( ) ( )C I C 0 1T Tε = . We have investigated alternative functional forms 
that describe the theoretical data in Figure 3.11 rather better, but have not used them in 
this section because the power law is reasonably accurate for both clean and dirty 
superconductors and the improvement in JC parameterisation was not sufficiently large. 
Given the large uncertainties in λ tr, we have also shown in Figure 3.11 the results and 
values of w for ( )tr I 0 5.5λ ε = =  and 1 [1 is considered as the lower bound for Nb3Sn 

with ( )C2 I0, 0 27 TB ε = ≥ ], as well as for the extreme dirty limit (λ tr = ∞). It can be seen 

that w increases as ( )tr I 0λ ε =  decreases or the relative contribution of variations in 

( )0N  increases. Measurements on Nb3Al thin films108 imply that λ tr ≈ 7, corresponding 

to w ≈ 2.5 (variations only in ω ln) and w ≈ 2.9 [variations only in ( )0N ] for the range 

( ) ( )C I C 0 0.92T Tε ≥  (ε I = −1.4% for the Nb3Al Sumitomo wire). 

3.4.3 Comparison of theoretical and experimental results 
Comparing the theoretical values for w (Figure 3.11) with the experimental data 

(Figure 3.9), it can be seen that the agreement is considerably better if the strain-
dependence of the average phonon frequencies is the dominant factor. Assuming 

( )tr I 0 3λ ε = = , microscopic theory gives w = 2.4 if ( )0N  is constant and higher values 

if ( )0N  varies, compared to the typical experimental values for high- ( )*
C2 0B  wires 

between ~2 and ~2.5. Our results are therefore in agreement with the implications of 
Testardi’s work110-112, who related the strain-dependence of TC to the large phonon 
anharmonicity effects in A15 superconductors113,114. Alternatively, various properties of 
A15 compounds have been related to peaks in the electronic density of states near the 
Fermi energy115,116. However, it has been noted that tertiary additions would broaden 
these peaks and therefore cause a reduction in the strain-sensitivity of TC if the variations 
in ( )0N  were indeed the dominant factor, whereas the opposite effect is observed 
experimentally [see Figure 3.8(a)]2. Band-structure calculations117-119 also show that there 
is only a relatively small decrease in ( )0N  (< 3%) for the transition from the cubic to the 
tetragonal phases of Nb3Sn. Here, the distortion of the unit cell in the tetragonal phase112 
can be considered as equivalent to a macroscopic strain of ε I ≈ −0.44% (calculated by 
equating the deviatoric strain components70): the lower values of TC (~1 K in otherwise 
equivalent materials)120 and ( )C2 0B  (~3 T)121 observed for the tetragonal phase are 
indeed broadly consistent with our strain results (see Figure 3.8).  

Some other results in the literature can be used to assess the validity of the 
assumptions made in the analysis and the conclusions about the microscopic mechanism. 
Due to a lack of information about uniaxial strain effects, it is necessary to discuss 
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measurements of microscopic properties as a function of various other adjustable 
parameters. In measurements on Nb3Sn under hydrostatic pressure90, changes in both 

( )0N  and ω ln were observed, and the parameter 2I  increased slightly as ( )0N  

decreased (in contrast to our assumption of 2 constantI = ). The large differences 
between the effect of non-hydrostatic (uniaxial) strains and hydrostatic strains on the 
superconducting properties (TC)71 may indicate that there is a different mechanism 
operating in each case (indeed, the dependences are of opposite sign in V3Si2,122). 
Nevertheless, such a correlation between ( )0N  and 2I 123 would tend to increase the 
calculated value of w and therefore, from the comparison with the experimental data, 
further strengthen the case for phononic changes being the dominant factor. We also note 
that experimental124 and computational125 data show that 2I  is approximately constant 
for series of different niobium-based superconductors. Tunnelling measurements126 on 
Nb-Sn samples with varying stoichiometry show that *µ  is approximately constant for 
variations in TC of ~7 K, consistent with our assumption for the case of uniaxial strain. In 
these measurements, the largest changes in ( )2Fα ω  occurred at lower frequencies and 
therefore ω ln varied more than ω2 (by ~50% for variations in TC of ~3 K): this effect 
would also tend to increase the calculated value of w (and further emphasise the role of 
phononic changes). 

Comparison between our experimental data and theory provides strong evidence that 
in high- *

C2B  Nb3Sn, uniaxial strain predominantly changes the average phonon 
frequencies rather than the electronic density of states at the Fermi energy. The theory—
in which w decreases with increasing impurity scattering rate—also provides a 
straightforward explanation for low values of w (≤ 2.5) for ternary Nb3Sn compared to 
the binary materials (~3.6)1,20. Estimating λ tr ≈ 1 for the binary Nb3Sn wires109, and 
considering values of ( ) ( )C I C 0 0.94T Tε ≥ , gives w ≈ 3.3 for the case where phononic 
changes dominate and w ≈ 3.9 for the case where the electronic changes dominate. 

Table 3.2. RMS errors for fits to the comprehensive ( )C , ,J B T ε  data using various scaling laws. 
 

 Scaling Law RMS error (mean IC) (A) 

 EM-LMI  Vac OST 

 (42.5) (61.4) (35.7) 

 ISL 1.40 2.05 1.35  

 Simplified ISL (u free) 1.40 2.50 1.75 

 Simplified ISL (u = 0) 1.40 2.50 1.80 

 Simplified ISL (u = 1.25) 1.55 3.20 1.85 

 Simplified ISL [free: 
 ( )0A , ( )*

C 0T , ( )*
C2 0,0B , εM]  

2.10 6.60 5.70 
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Table 3.3. Simplified Interpolative Scaling Law parameters for (a) the EM-LMI wire, (b) the Vac 
wire, and (c) the OST wire. Note that for the values given in the table intrinsic strain is in units of 
percent and the calculated JC is the engineering critical current density in units of Am−2. 
 

(a) EM-LMI Wire 

P q n ν w u εM (%) 

0.4741 1.953 2.338 1.446 1.936 −0.056 0.2786 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

2.446 × 107 16.89 28.54 −0.7697 −0.4913 −0.0538 

 

(b) Vac Wire 

P q n ν w u εM (%) 

0.4625 1.452 2.457 1.225 2.216 0.051 0.3404 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

9.460 × 106 17.58 29.59 −0.6602 −0.4656 −0.1075 

 

(c) OST Wire 

p q n ν w u εM (%) 

0.4763 2.150 3.069 1.240 2.545 −0.912 0.2421 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

6.417 × 106 18.00 29.17 −0.6457 −0.4514 −0.1009 

3.5 Simplified interpolative scaling law for JC(B,T,ε) 

In this section, a simplified version of the Interpolative Scaling Law involving fewer 
free parameters is presented, and the typical accuracy that can be expected when using 
this scaling law to extrapolate from partial ( )C , ,J B T ε  datasets is quantified1,85. 

3.5.1 Parameterisations of complete JC(B,T,ε) datasets 

Firstly, we assume that the power-law relation between ( )C2 I0,B ε  and ( )C IT ε  given 
by Equation (1.9) is valid, which was shown to be the case for the experimental and 
theoretical results presented in Section 3.4. Secondly, we note that the optimum 
polynomial functions for ( )IA ε  are generally quite complex (>1 turning point), but have 
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large associated uncertainties (for example, are sensitive to the fitting procedure) and 
vary considerably between different wires. Hence for simplicity (and without much loss 
of accuracy, as shown below), it will be assumed that ( )IA ε  can also be constrained as a 

power-law function of ( )C IT ε 85. The simplified Interpolative Scaling Law therefore 
involves the following relations (the exponent m has been set to 2): 

 ( ) ( ) ( )( ) ( ) ( )
2 3* 2 * 1

C I I C I C2 I, , 1 , 1
n qpJ B T A T t B T b bε ε ε ε

− −   = − −    (1.15) 

 ( ) ( )( )* *
C2 I C2 I, 0, 1B T B tνε ε= −  (1.16) 

 ( )
( )

( )
( )

( )
( )

1 1* *
I C2 I C I

* *
C2 C

0,
0 0,0 0

u w
A B T
A B T

ε ε ε   
= =      

   
 (1.17) 

 ( )
( )

*
C2 I 2 3 4

2 I 3 I 4 I*
C2

0,
1

0,0
B

c c c
B

ε
ε ε ε= + + + , (1.18) 

which we take to be valid for different electron-phonon coupling strengths and impurity 
scattering rates. Using this simplified scaling law to fit the complete ( )C , ,J B T ε  datasets 
for the Vac, EM-LMI and OST91 Nb3Sn wires gives RMS errors of ~1.5−2.5 A, as shown 
in Table 3.2. The simplified Interpolative Scaling Law involves 13 free parameters 
(compared to 17 for the ISL), the optimum values of which are shown in Table 3.3. Table 
3.2 also shows errors for the simplified ISL with fixed values for u [the power-law 
exponent for ( )IA ε , discussed below] and with the set of universal values proposed in 
the next section for the parameterisations of partial datasets [in this case, there are 4 free 
parameters: ( )0A , ( )*

C2 0,0B , ( )*
C 0T , and εM]. 

Using Equations (1.2), (1.4), and (1.5), the prefactor ( )IA ε  can be written as:  

 ( ) ( ) ( ) ( )1 2
I 0 I I I0.97A Aε µ ε γ ε η ε′= . (1.19) 

The results from microscopic theory presented in Section 3.4.2 allow the term 
( ) ( )I Iγ ε η ε  in Equation (1.19) to be related to ( )*

C IT ε . Assuming that 

( )I constantA ε′ = , an approximate power-law relationship between ( )IA ε  and ( )*
C IT ε  is 

then obtained with exponent u = 1.25 (variations only in ω ln) or u = 1.65 [variations only 
in ( )0N ]. As shown in Table 3.2, however, the fits to the complete datasets using the 
simplified Interpolative Scaling Law with u = 1.25 have RMS errors that are ~30% 
higher than the fits with u as a free parameter. The optimum values for u are 
approximately zero for the EM-LMI and Vac wires and approximately −1 for the OST 
wire, although the latter value has a large associated uncertainty, as shown by the small 
increase in the error that is observed when u is fixed at zero (see Table 3.2). Hence the 
large uncertainties (and our assumption about the value of the exponent m) prevent any 
definite physical interpretation of ( )IA ε′  at this stage23,101. 
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The optimum values of u in the simplified Interpolative Scaling Law can also be 
compared with the Summers Scaling Law, in which the variation of the prefactor was 
fixed so that ( ) ( )*

PM I C2 I0, 0,
n

F Bε ε
′

 ∝    with 1n′ = , in approximate agreement with 

Ekin’s Strain Scaling Law [ ( )PM I0,F ε  is the maximum volume pinning force at 

T = 0]1,85. In the simplified Interpolative Scaling Law, ( )1 2 2n w u w n−′ = + + −    and has 
values of ~1.1 (EM-LMI) and ~1.2 (Vac). 

3.5.2 Parameterisations of partial JC(B,T,ε) datasets 

An important practical issue in relation to scaling laws for ( )C , ,J B T ε  relates to the 
accuracy achieved when extrapolating parameterisations of partial datasets. Given the 
considerable resources involved in obtaining comprehensive ( )C , ,J B T ε  data, it is 
important to understand the minimum datasets and the types of scaling law that are 
required for sufficiently accurate predictions to be made. We will investigate this issue 
by using the simplified Interpolative Scaling Law to fit subsets of the complete 

( )C , ,J B T ε  datasets, and then comparing the extrapolations with the measured data in 
regions of parameter space not included in the fit. Three types of partial dataset will be 
considered: (a) ( )C ,4.2 K,J B ε  and ( )C , , constantJ B T ε =  data (i.e. variable-strain 

Table 3.4. Approximate universal values for parameters in the simplified Interpolative Scaling 
Law used for fitting partial ( )C , ,J B T ε datasets (the letters in brackets show the partial datasets 
for which the universal values are required: see Table 3.5). 
 

p q n ν w ( )*
C 0T (K) 

(abc)0.5(abc) abc)2(abc) (abc)2.5(abc) (abc)1.5(abc) (abc)2.2(abc) (b)17.5(b) 

u c2 c3 c4 c5 

(c)0(c) (c)−0.752(c) (c)−0.419(c) (c)0.0611(c) (c) 0.0619(c) 

Table 3.5. RMS errors for extrapolations made from partial datasets using the simplified 
Interpolative Scaling Law. The extrapolations and fits are limited to 4.2 K ≤ T ≤ 8 K and 

I 1.1%ε ≤ . Also shown are the mean values of IC in the extrapolation regions. 
 

Partial dataset fitted RMS error for extrapolation (mean IC) (A) 

 EM-LMI wire Vac wire OST wire 

(a)  
( )C A, , 0J B T ε = and 

( )C A,4.2 K,J B ε  
2.6 (38.0) 3.2 (43.0) 3.0 (27.5) 

(b)  ( )C A,4.2 K,J B ε  3.7 (38.5) 3.7 (43.0) 7.2 (27.5) 

(c)  ( )C A, , 0J B T ε =  2.6 (47.5) 5.7 (83.0) 7.0 (50.5) 
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measurements at 4.2 K combined with variable-temperature measurements at zero 
applied strain); (b) only ( )C ,4.2 K,J B ε  data; (c) only ( )C , , constantJ B T ε =  data. 

In all three cases, it is necessary to use an appropriate fixed value for the exponent w. 
Based on our comprehensive data for a number of technological wires (EM-LMI, Vac, 
OST), and consistent with microscopic theory, we propose that w = 2.2 is the best 
“universal” value to take for Nb3Sn wires characterised by high values of ( )*

C2 0,0B . 
Variations in w of approximately ±20% are observed (and are expected due to variations 
in the dirtiness of the Nb3Sn), but it will be shown that this universal value is adequate 
for the extrapolations carried out below. Although the values of some or all of the 
exponents p, q, n, and ν can in principle be determined from each of the partial datasets, 
we have found that more accurate predictions are generally obtained if these exponents 
are fixed at the universal values shown in Table 3.4. These universal values include the 
Kramer values of p = 1 2  and q = 264,101, a value of ν = 3 2  that approximately describes 
(to within ~2%) the Maki-de Gennes relation for ( )C2B T 92,103,104, and a half-integral 
value of n = 5 2  observed for a number of Nb3Sn wires79,91. It can be seen by comparing 
Tables 3.3 and 3.4 that there are some differences between the optimum and universal 
values for these exponents, particularly for the Vac wire. Nevertheless we have found 
that the universal values are generally closer to the optimum global values required for 
accurate extrapolations than the values obtained from partial datasets.  

In case (a), constraining 5 parameters (p, q, n, ν, w) to the universal values described 
above results in optimum extrapolations, while case (b) also requires a fixed value of 

( )*
C I 0T ε = , for which we propose 17.5 K as the best universal value8,91. In case (c) 

where no variable-strain data are available, universal relations for the strain-dependent 
parameters are necessary. Figure 3.8 shows evidence of a universal relation for the 
normalised values of ( )*

C2 I0,B ε  in Nb3Sn wires characterised by high values of upper 
critical field. This relation can be described by a fifth-order polynomial with values for 
the coefficients as shown in Table 3.4. Given the accuracy of the fits shown in Table 3.2, 
we suggest setting u = 0, which (together with w = 2.2) then gives approximate universal 
relations for the normalised values of ( )I constA ε =  and ( )*

C IT ε . In case (c), an estimate 
of the equivalent intrinsic strain (i.e. the parameter εM) is also required, which can in 
principle be calculated127,128 but represents a potentially large additional source of error. 

With the appropriate parameters fixed (see Table 3.4), the remaining free parameters 
can be obtained by fitting the partial datasets. Table 3.5 shows the accuracy of the 
resulting extrapolations for three different Nb3Sn wires, where the extrapolations (and the 
fits) are constrained to the region of parameter space defined by 4.2 K ≤ T ≤ 8 K and 

I 1.1%ε ≤ . It can be seen that for case (a) the RMS differences between the calculated 
and measured values in the extrapolation region are typically ~8% of the mean critical 
current. The errors are somewhat larger for case (b), particularly for the OST wire where 
the RMS error is ~25%. Note also that in case (c) it has been assumed that εM has been 
accurately calculated to be the optimum value, although it is found that errors of ±10% in 
εM cause the RMS errors for the extrapolations to increase by ~50%. If the extrapolations 
are extended to the whole range of parameter space (i.e. 4.2 K ≤ T ≤ 12 K and 

I 1.6%ε ≤ ) the errors increase further, typically by a factor of ~2.  
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In conclusion, we propose the simplified Interpolative Scaling Law for 
parameterising ( )C , ,J B T ε  data. For complete datasets, it allows interpolations to be 
made with an accuracy of ~4% and, with fewer and more easily-determinable free 
parameters (in relation to the ISL), it facilitates interlaboratory and intersample 
comparisons. For partial datasets, the simplified Interpolative Scaling Law with 
appropriate fixed parameters allows extrapolations to be made that are reasonably 
accurate and extensive: if variable-temperature and variable-strain datasets are available, 
accuracies of ~8% can be achieved over limited ranges, whereas if only variable-
temperature or only variable-strain data are available, the errors increase. 

3.6 Conclusions 

Comprehensive ( )C , ,J B T ε  data are presented for the EM-LMI and Vac Nb3Sn 
superconducting wires used in the two ITER model coils. Various consistency tests 
demonstrate good interlaboratory agreement and that JC is a single-valued function of B, 
T, and ε. For high-upper-critical-field (28−30 T) Nb3Sn wires, we report an 
approximately universal relationship between normalised ( )*

C2 0B  and intrinsic strain, and 

a power-law relationship between ( )*
C2 I0,B ε  and ( )*

C IT ε  with a typical value of ~2.2 for 
the exponent. Both results differ from those obtained previously for binary, low-upper-
critical-field (~24 T) Nb3Sn wires in which ( )*

C2 0B  and *
CT  are less strain-dependent and 

the power-law exponent is larger (≥ 3). The standard Summers Scaling Law therefore 
predicts a weaker strain-dependence for JC and does not accurately fit the ( )C , ,J B T ε  
data for either the EM-LMI or Vac wires. Analysis of the relationship between 

( )*
C2 I0,B ε  and ( )*

C IT ε  using microscopic theory shows that the calculated value for the 
power-law exponent decreases with increasing impurity scattering rate in agreement with 
the experimental data, and that the uniaxial strain effects are predominantly due to 
changes in the average phonon frequencies rather than the electronic density of states at 
the Fermi energy. We propose a simplified Interpolative Scaling Law to describe 

( )C , ,J B T ε  in technological Nb3Sn wires with high values of upper critical field, 
motivated by microscopic theory and scaling considerations. The scaling law 
incorporates a polynomial function for normalised ( )*

C2 I0,B ε  and modified power-law 
relations between the strain-dependent variables. It allows accurate (~4%) 
parameterisations to be made of complete ( )C , ,J B T ε  datasets and, with appropriate 
universal values for some of the parameters, reasonably accurate and extensive 
predictions to be made from partial datasets. 
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Appendix: Parameterising variable-strain critical-current 
data of strands for coils and magnets  
(Part of University of Durham Report No. EFDA/03-1103) 

The “simplified interpolative scaling law” uses the following set of equations to 
parameterise the critical current density of technological A15 (Nb3Sn and Nb3Al) strands 
as a function of magnetic field, temperature, and axial strain (Ref. A1): 

 ( ) ( ) ( )( ) ( ) ( )
2 3* 2 * 1

C I I C I C2 I, , 1 , 1
n qpJ B T A T t B T b bε ε ε ε

− −   = − −    (A20) 

 ( ) ( )( )* *
C2 I C2 I, 0, 1B T B tνε ε= −  (A21) 

 ( )
( )

( )
( )

( )
( )

1 1* *
I C2 I C I

* *
C2 C

0,
0 0,0 0

u w
A B T
A B T

ε ε ε   
= =      

   
 (A22) 

 ( )
( )

*
C2 I 2 3 4

2 I 3 I 4 I*
C2

0,
1

0,0
B

c c c
B

ε
ε ε ε= + + + . (A23) 

where: JC: engineering critical current density (Am−2), defined as the critical current 
divided by the total cross-sectional-area of the wire. 

I A Mε ε ε= − . ε I: intrinsic strain. εA: applied strain. εM: applied strain at the peak 
(all in units of percent). 

*
CT : effective critical temperature (K). 

*
Ct T T= : reduced temperature. 

*
C2B : effective upper critical field (T). 

*
C2b B B= : reduced magnetic field. 

 
The simplified interpolative scaling law involves 13 parameters, the values of which are 
presented below for a number of Nb3Sn strands and a Nb3Al strand (for JC defined at 
10 µVm−1). 
 
For parameterising partial datasets, universal values are used for some of the parameters, 
as described in Ref. A1. For example, where only variable-strain limited-variabl;e-field 
data at 4.2 K are available, the values p = 0.5, q = 2, n = 2.5, ν  = 1.5, w = 2.2, and 

( )*
C 0T  = 17.5 K are used (see Table 3 below—Furukawa strand). 
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1 EM-LMI ITER Nb3Sn (diameter: 0.81 mm) 
 
Data range parameterised: 0.5 T ≤ B ≤ 23 T, 4.2 K ≤ T ≤ 12 K, −0.81% ≤ εA ≤ 0.61%. 
RMS difference between measured and calculated values: 1.4 A. 
 

p Q n ν w u εM (%) 

0.4741 1.953 2.338 1.446 1.936 −0.056 0.2786 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

2.446 × 107 16.89 28.54 −0.7697 −0.4913 −0.0538 

 
 
 
2 Vac ITER Nb3Sn (diameter: 0.81 mm) 
 
Data range parameterised: 0.5 T ≤ B ≤ 23 T, 4.2 K ≤ T ≤ 12 K, −1.22% ≤ εA ≤ 0.73%. 
RMS difference between measured and calculated values: 2.5 A. 
 

p Q n ν w u εM (%) 

0.4625 1.452 2.457 1.225 2.216 0.051 0.3404 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

9.460 × 106 17.58 29.59 −0.6602 −0.4656 −0.1075 

 
 
 
3 Furukawa ITER Nb3Sn (diameter: 0.81 mm) 
 
Data range parameterised: 0.5 T ≤ B ≤ 15 T, T = 4.2 K, −1.22% ≤ εA ≤ 0.73%. 
RMS difference between measured and calculated values: 2.7 A. 
 

p q n ν w u εM (%) 

0.5† 2† 2.5† 1.5† 2.2† 0† 0.3152 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

1.112 × 107 17.5† 30.90 −0.6451 −0.4192 −0.0814 

†Universal values. 
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4 Sumitomo ITER Nb3Al (diameter: 0.81 mm) 
 
a) Data range parameterised: 0.5 T ≤ B ≤ 15 T, 4.2 K ≤ T ≤ 14 K, −1.96% ≤ εA ≤ 0.73%. 
RMS difference between measured and calculated values: 1.1 A. 
 

p q n ν w u εM (%) 

0.6973 2.671 2.651 1.269 1.933 −0.102 0.1609 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

2.564 × 107 15.68 26.81 −0.1050 −0.0074 0.0065 

 
 
 
The following represent fits over reduced ranges, as performed in Ref A2:  
 
b) Data range parameterised: 0.5 T ≤ B ≤ 15 T, 4.2 K ≤ T ≤ 10 K, −0.73% ≤ εA ≤ 0.73%. 
RMS difference between measured and calculated values: 0.8 A. 
 

p q n ν w u εM (%) 

0.7292 2.762 2.632 1.258 2.021 −0.687 0.1479 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

2.869 × 107 15.67 27.23 −0.1116 0.0116 0.0264 

 
 
c) Data range parameterised: 0.5 T ≤ B ≤ 15 T, 4.2 K ≤ T ≤ 10 K, −1.96% ≤ εA < −0.73%. 
RMS difference between measured and calculated values: 0.8 A. 
 

p q n ν w u εM (%) 

0.4666 2.191 2.940 1.204 1.884 −0.107 0.1609 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

7.365 × 106 16.52 26.81 −0.2326 −0.1275 −0.0229 
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5 OST Nb3Sn (diameter: 0.5 mm) 
 
Data range parameterised: 0.5 T ≤ B ≤ 15 T, 4.2 K ≤ T ≤ 12 K, −1.22% ≤ εA ≤ 0.49%. 
RMS difference between measured and calculated values: 1.7 A. 
 

p q n ν w u εM (%) 

0.4763 2.150 3.069 1.240 2.545 −0.912 0.2421 

( )0A  
(Am−2T3−nK−2) 

( )*
C 0T  

(K) 
( )*

C2 0,0B  
(T) 

c2 

 
c3 

 
c4 

 

6.417 × 106 18.00 29.17 −0.6457 −0.4514 −0.1009 

 
 
Ref. A1: D. M. J. Taylor and D. P. Hampshire, Phys. Rev. B (In progress September 2004) 
Ref. A2: Keys, N. Koizumi, and D. P. Hampshire, Supercond. Sci. Tech. 15, 991 (2002) 
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