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Abstract. This paper analyses the role of defects within the flux-line lattice of high-current- 
density superconductors. A simple model demonstrates that above the normal density 
distribution in critical currents the E-/ characteristic is linear with a resistivity many orders 
of magnitude less than the bulk flux-flow resistivity. The universality of the three free 
parameters that describe the defect motion is explicitly demonstrated by considering data 
on Nb& throughout its entire superconducting phase. 

1. Introduction 

This paper considers the E-J characteristic of high-current-density, high-field super- 
conducting compounds and alloys. A simple model is considered which is used to analyse 
the motion of defects within the flux-line lattice (FLL). It is this mechanism which is 
considered to be the most significant for the movement of flux above the critical current 
in all high-current-density materials. This analysis is used to derive the three-parameter 
fit the authors have successfully used to characterise a number of high-current-density 
materials (Hampshire and Jones 1986a) and that is of the form 

where 

E is the electric field, J the transport current density and we introduce Ji as the local 
critical current in a region i. Also, pI is the interaction resistivity, p i s  the synchronisation 
constant and jc is the mean critical current density. 
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In the next section a brief summary of bulk flux flow in defect-free systems and in 
particular the nature of the flux-flow resistivity pris addressed. In the third section these 
concepts are incorporated in a simple model used to describe defect motion in the FLL. 
In the fourth section this idealised model is generalised to consider highly pinned systems 
and an interpretation of the physical parameters PI, and J ,  is given. The fifth section 
demonstrates the compatibility between the three-parameter fit (equation (1)) and the 
empirical two-parameter law, which is often used to characterise the structure of the E- 
J characteristic (Walters 1974) of the form 

E = aJ" (3) 
where a (the alpha parameter) and n (the index) are constants. 

The functional form in field-temperature (B-T)  space of the empirical parameters 
a and n can thus be given a physical interpretation through the parameters pI, P and J,.  
In the sixth section specific data that have been generated on Nb3Sn modified-jelly-roll 
(MJR) in the range 2.5 K S T < T,, 1 s B 6 15 T are explicitly considered within the 
general framework given for flux flow in high-current-density materials, and the uni- 
versality of the three parameters is demonstrated. This paper concludes by presenting 
the disconcerting reservations the authors have on the validity of the comparison between 
data from nominally defect-free systems and the theoretical understanding of the flux- 
flow resistivity. 

2. Defect-free systems 

There has been a great deal of theoretical and experimental work on the bulk motion of 
the FLL through defect-free systems. There are considered to be three main sources of 
energy-dissipation: the flow of a normal current within the moving core of a fluxon 
(Bardeen and Stephen 1965); the relaxation in the order parameter towards its equi- 
librium state when it is forced to vary in time as the flux flows (Tinkham 1964); and the 
slow-diffusion mechanism which is essentially a relaxation of the order parameter caused 
by the anomalous term in the microscopic theory (Gorkov and Kopnin 1973). The 
relative importance of these different contributions has been calculated at different field 
and temperature limits for different values of the Ginzburg-Landau parameter K .  
However, in all cases 

E = p,J (4) 
where pf is the flux-flow resistivity. More specifically, the theoretical analyses and 
experimental data suggest that 

lim pf a B for all K. 
B- 0 

Experimentally, it has not been possible to produce materials obeying equation 4. It is 
clear that even if the superconductor is perfectly stoichiometric and defect-free, the 
surfaces of the superconductor provide the possibility of flux-pinning. Thus in general it 
is found that 

E = p ( J  - J , )  ( 5 )  
where p (the resistivity) and J ,  (the critical current) are independent of E and J .  It is then 
assumed that one can equate the resistivity in equation 5 with the flux-flow resistivity. 
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Assuming the validity of this identity demands that the mechanism for dissipation is 
unique, namely the bulk motion of the entire FLL. This will be discussed further in the 
concluding comments in this paper. 

3. Flux flow in an idealised highly pinned composite 

The first part of this section considers the properties of an idealised circuit which will be 
used as a framework to discuss the motion of defects in the FLL. The second part considers 
the experimental evidence for defect flow being the dominant mechanism for voltage 
generation above I,. 

3.1. A simple model forflux flow 

Consider an idealised superconducting path of unit area and unit length. This path 
consists of two regions A and B in series. Region A which occupies a fraction F of the 
total length has a critical current Z; , the rest of the path has a critical current Z: (where 
ZL < Z:). Although these two regions have different pinning-site configurations (and 
thus different critical currents) when bulk flux flow occurs it is assumed that they 
have the same characteristic flux-flow resistivity, pf. Thus for each region, the V-Z 
characteristic is as follows. For region A: 

v = o  for Z 6 Z i  

v = Fp,(Z - 15) forZ3Z; .  

For region B: 

v=o for Z s Z: 

V = ( l  - F)pf(Z-Z:) for Z Z:. 

Thus the V-Z characteristic of the entire circuit is: 

v=o for Z 6 ZL (6) 

V = Fpf(Z - Z i )  (7) 

v = Pf{Z - [FZ:. + (1 - F ) z : ] }  for Z 1;. (8) 

for 15 s I 6  1; 

Thus the V-Z characteristic of this path consists of three linear regions (equations 6-8). 
At low transport current the path is truly superconducting. At high current, there is the 
bulk motion of all flux present which ischaracterised by the flux-flow resistivity. However 
there is also an intermediate current domain when only a small fraction of the total 
number of fluxons are moving, governed by equation 7, or equivalently: 

where pr (the interaction resistivity) = Fpf, and Z, = FZ; + (1 - F)Z:.  
In this current path, some fluxons well below criticality are coupled with other 

fluxons at criticality. This crucial feature of two species of fluxons coupled together (i.e. 
experiencing the same transport current) leads to regions of very low resistance. There 
is an obvious analogy here with crystals where the presence of defects reduces their 
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critical stress by many orders of magnitudes. This coupling can occur in high-K super- 
conductors where, because there is much overlapping of fluxons, the transport current 
at any point interacts with many fluxons simultaneously. 

Hence it can be seen that this simple model can be used to consider the motion of 
defects in the FLL in superconducting systems. 

Below Z i  there is no flux motion and the system can be said to be truly super- 
conducting. At Zi all the defects in the FLL are at criticality. Above 15 the defects in the 
FLL flow across the superconductor (in much the same way that defects flow across 
crystals above their critical stress). This leads to a resistivity many orders of magnitude 
less than the bulk flux-flow resistivity. This is just the result that has been found by 
the authors for the high-current-density materials NbTi, V3Ga and Nb3Sn-typically 

It is clear that this model does not consider many of the complexities of defect motion 
such as: defect-defect interactions; different types of defects; and defect production. 
However despite avoiding the complexities associated with considering all the different 
types of defects in the FLL, the main theme of the model describing defect motion 
remains. The general E-J characteristic is given by 

PI < 1o-5pf. 

where J ,  is the maximum critical current for which there is no flux motion, and pr, the 
interaction resistivity, is many orders of magnitude less than the flux-flow resistivity 
characteristic of bulk flux flow. 

3.2. Experimental evidence for defect motion in the FLL 

Four sources of experimental evidence that suggest the importance of defect motion in 
the FLL are considered below. 

(i) Noise measurements. Measurement of the noise emitted from superconductors 
during flux flow demands that fluxon bundles do not simply traverse the width of 
the superconductor in one continuous movement. Rather, flux bundles experience 
intermittent periods of motion and periods of being static (Habbal and Joiner 1977). 
This is consistent with the model of defect motion considered. 

(ii) The history effect. It has been demonstrated that the critical current at a given 
field and temperature is dependent on the path in phase-space by which the field and 
temperature is achieved (Kupfer and Meier-Hirmer 1985). It is clear that the number 
and type of dislocations in the FLL is determined by the interaction between the FLL and 
the underlying microstructure. Since the FLL can achieve many possible disordered 
configurations we do not expect a unique number and type of defect at a given field and 
temperature. Thus it is clear that the model presented is consistent with the critical 
current not being a unique function of field and temperature. 

(iii) Direct Observation of defects in the FLL. Using decorative techniques (Essmann 
and Trauble 1967) and SEM (Singh et a1 1976), direct observation of defects in the FLL 
have been observed. 

(iv) The interaction resistivity. The data on Nb3Sn presented in this paper will dem- 
onstrate that the effective resistivity above the normal distribution in I ,  is seven orders 
of magnitude lower than that expected were all fluxons to be in motion. This is consistent 
with the generation of voltage above I ,  being due to the motion of defects and thus only 
a small fraction of the fluxons being in motion at any given time. 
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4. Flux flow in highly pinned, inhomogeneous superconducting compounds 

Even a preliminary investigation of the microstructure of high-current-density materials 
suggests significant variation of the pinning strengths and thus the critical current along 
the length of the composites. A superconducting composite can be considered to consist 
of a large number of component regions each with its own characteristic critical current. 
The total electric field generated is now a superposition of those of the type given by 
equation 9 as was suggested by Jones and co-workers (1967). Thus, this can be gen- 
eralised to give an E-J characteristic of the form 

or for a large number of component regions 
J 

E = pif(Ji)(J - J i >  d ~ ,  

where f ( J J  characterises the distribution in the critical currents for the component 
regions. 

Baixeras and Fournet (1967) have used equation 10 to characterise high-current- 
density materials. Their interpretation off(JI) was such as to consider a unique value for 
J ,  beyond which moving fluxons interacted with stationary fluxons causing them to move. 
The derivation given here does not require the introduction of an interaction of this sort 
but rather only a distribution in the critical currents of the component regions. 

In the analysis of the data on MJR Nb3Sn it is assumed that f ( J I )  is the normal density 
function given by equation 2 .  The primary justification for this assumption is that it 
describes our data presented previously on NbTi (Hampshire and Jones 1986a) and the 
data presented here on Nb3Sn. Evetts and Plummer (1985) have pointed out that since 
the different sources of inhomogeneity that determine J ,  are independent the central- 
limit theorem demands thatf(J,) is likely to be very close to a normal density function. 
Recently the essentially ‘bell-shaped’ form of the distribution has been confirmed by 
Warnes and Larbalestier (1986) using direct deconvolution by using the equation (Jones 
et a1 1967) 

a2E/aJ2  = pf f ( J ) .  (11) 

However, in the range of currents considered, it will be demonstrated that pr in 

The interpretation of the three free parameters in the E-J characteristic are now 
equation 11 should be replaced by pI. 

considered in turn. 

4.1, The interaction resistivity, p I  

It is clear from the model outlined above that the interaction resistivity is determined by 
the number and type of defects in the FLL that are present-characterising the resistivity 
of the superconductor when all the defects in the FLL are in motion. It is not strictly a 
unique function of field/temperature but has been found to be as such, to within 
experimental error. Its functional form is determined essentially by the interaction 
between two structures-the underlying pinning structure and the FLL. It is assumed in 
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the analysis below that it is uniquely determined by the average thermodynamic prop- 
erties of the superconductor and is thus independent of the local critical current. Its size 
is many orders of magnitude less than the flux-flow resistivity. 

4.2.  The synchronisation constant, P 
Any elementary statistics text gives the result that the standard deviation U of the 
distribution in the current density is 

U = J, /P = [ ( J f ) *  - (Jc)2]1’2 + l/P2 = [J7 - ( J , ) 2 ] / ( J c ) 2 .  (12) 
It can be seen from equation 12 that the size of P gives a measure of the width of the 

distribution of critical currents and the B-T dependence of P gives the different B-T 
dependences that operate in the component regions of the composite. 

Consider aparticular point in B-Tspace at which for two different component critical 
currents J’ andJ”, they are such that J’ > J”. Then assuming the most simple case, namely 
that this inequality holds throughout the entire superconducting phase for allJ”, J’, then 
in general we have 

f ( J ‘> / f ( J?  = P I  
where p f  is independent of both field and temperature, andfis defined in equation 2. 

If we let J” = J ,  

It is clear that equation 13 is the general equation giving the B-T dependence of an 
arbitrary component of the distribution in critical currents. The identity of this com- 
ponent is defined by the constantp,. 

The three most significant cases for the functional form of P(B, T )  are now briefly 
discussed. 

(i) P(B,  T )  = constant 

In this case for all p , :  

J‘ = C j c ( B ,  T ) .  

Thus all the component regions of the composite obey an identical scaling law differing 
only by a constant prefactor C. 

If we consider the mean critical current to obey a Fietz-Webb scaling law of the form 
(ii) P(B,  T )  = P(b) (or similarly P(B,  T )  = P ( T ) )  

J J B ,  T )  = C*fc2(T)f(b) 
where C* is a constant and b = B/BC2(T) ,  then 

J ’ (B5  T )  = C*H%2(T){[1 + (2 1n(1/pI)) “*/P(b)] f (b) ) .  

Thus all the component critical currents have an identical temperature dependence but 
have different reduced-field dependences depending on the value for p ,  (or equivalently 
which particular region is considered). This case is found over a limited range for the 
MJR Nb3Sn data considered below. 

(iii) P(B, T )  = P(b,  T )  
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In this case if the critical-current distribution function isstrictly a normal density function 
for all fields and temperatures, it is clear that even if Jc(B, T )  obeys a Fietz-Webb scaling 
law, the functional form of the critical current for all other component regions cannot 
be expressed in terms of a scaling law. 

However if we relax the condition that the distribution function for the critical 
currents is rigorously a normal density function, and assume that it is in fact a good 
approximation to a generalised bell-shaped distribution, then P(B,  T )  is essentially the 
parameter which delineates the ‘tails’ of the distribution from the central region. 

From equation 13, in the ‘tails’ of the distribution (pi+ 0), we have 

It is clear that if J’ obeys a scaling law (i.e. J’ = C H z ( T )  f ’ (b) )  then 

Hence in the case that the component regions of the superconductor obey Fietz- 
Webb-type scaling laws of different field and temperature dependences, then the normal 
distribution will best fit to this with /3 obeying a universal scaling law. 

This universality of p has been observed by the authors for all high-current-density 
materials to date. 

4.3. The mean critical current density, J ,  

This parameter is self-explanatory, being the mean value of the distribution of com- 
ponent critical currents. 

5. The empirical formalism for the E-J characteristic 

The E-J characteristic is often described by the empirical equation 3. It has been 
demonstrated by Plummer and Evetts (1986) that in the tails of the normal density 
function there is good agreement over many decades of voltage. By equating equations 
1 and 3 and their first derivatives we find 

n = (n/2)’/2P for J = j, 

or equivalently 

0 = Jc/p = (Jc/n)(n/2)”2 

and 

Equations 14 and 15 give the empirical constants CY and n in terms of the physical 
parameters pI, p andJ,. Thus we can now give a physical interpretation for the field and 
temperature dependence of CY and n. A specific case of this interpretation will be given 
when the data on the Nb3Sn MJR is considered. 
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6. The structure of the E-J characteristic for Nban MJR as a function of field and 
temperature throughout the superconducting phase 

This section presents data on a Nb3Sn MJR composite which determines the empirical 
constants a and n and the physical parameters pI ,  /3 and J ,  throughout the super- 
conducting phase in the range 2.5 K s T < T, and 1 < B < 15 T. 

In the first two parts brief descriptions of the particular composite used and the 
apparatus and techniques employed in deriving the data are given. In the third part the 
details of the two-parameter and three-parameter computerised fits are outlined. In the 
fourth part the critical current is presented as a function of field and temperature. In the 
fifth part the validity of the Fietz-Webb scaling law is demonstrated and the functional 
form of the pinning force explicitly derived. The sixth and seventh part demonstrate the 
universality of the interaction resistivity and the synchronisation constant. A comparison 
between these parameters using both equations 14 and 15 with their values derived 
directly from the three-parameter fit is detailed. The B-T dependence of the different 
Fietz-Webb laws that operate in the component parts of the composite are discussed. 

6.1.  A highly homogeneous high-current-density NbJn M J R  composite 

The details of the design of this jelly-roll wire composite have been detailed by Smathers 
eta1 (1984). In these modified configurations, the conventional central tin core is replaced 
by a copper core. Juxtapositioned around the core are two meshes of niobium and bronze 
(Cu 13.5 wt% Sn). Beyond the niobium/bronze layer is an outer sheath of copper. 
Tantalum diffusion barriers prevent the poisoning of the copper by tin during reaction. 
The critical feature of these composites is that during reaction each niobium filament 
sees an identical tin supply. Using TEM and Auger it has been demonstrated that these 
idealised MJR conductors are probably amongst the most uniform Nb3Sn high-current- 
density composites yet made. 

Torr) at 700 "C ( t 2  "C) for 170 h fol- 
lowed by 750 "C for 340 h. This reaction ensured the complete conversion of niobium to 
Nb3Sn. 

The wire was reacted under vacuum 

6.2. Measurements of the E-J characteristic 

The details of the apparatus and techniques employed have been described by 
Hampshire and Jones (1987). However a general outline is as follows. 

At each fixed field and temperature a direct current was slowly increased through 
the helically wound superconducting specimen. Potential taps were positioned across 
0.33 m of the sample which lay in a uniform magnetic field. Temperature control was 
maintainedin two different modes: (i) T < 4.2 K. In this mode the sample lay in intimate 
thermal contact with the helium bath. The temperature was maintained using standard 
vapour pressure control (ii) T > 4.2 K. In this mode the sample was isolated from the 
helium bath but was in good thermal contact with a copper block which incorporates 
both heaters and thermometry. Feedback control between these elements ensures that 
during transport current flow the temperature of the sample remains constant throughout 
the measurement. 

A hard-copy trace of the voltage as a function of current is obtained at each field and 
temperature using an X-Y recorder. 



Defects in the superconducting flux-line lattice 3541 

6.3. The two-parameter and three-parameter computerised fits 

The hard-copy E-Zcharacteristics were digitised between 10 and 90 pV m-l at 5 pV m-l 
intervals. Above Bc2( T )  the resistance of the sample (matrix) and sample holder was 
determined between the potential taps (the contribution of the superconductor in the 
normal state is negligible). This resistance was verified as being field and temperature 
independent above Bc2( T )  as expected in this cryogenic range by taking measurements 
at various temperatures. At each digitised E-Z data point, the current being shunted 
through this parallel Ohmic path was subtracted and the corrected current through 
the superconductor alone obtained as a function of voltage. Two points are worth 
mentioning. 

The uncertainty in temperature quoted is due to the temperature gradients that exist 
between the thermometers and the sample in our experimental apparatus. This has been 

(i) The uncertainty in temperature. 

Figure 1. The critical current for MJR NbJSn as a function of field and temperature. 
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considered in detail and was shown to be k0.05 K for T < 4.2 K and k0.025 K for 
4.2 K < T < T,. 

This is always expected to some degree since critical current is not a fundmental thermo- 
dynamic function. Experimentally the primary sources of non-reversibility are: insta- 
bility in temperature control during the transition; non-zero time constants in electronic 
circuity; and electronic and thermal noise. 

Non-reversibility causes an uncertainty in the voltage at any given current of typically 
+ 2  pv m-'. 

For the two-parameter fits, the corrected E-Z data were used in a least-squares 
program which determined a and n .  

(ii) Non-reversibility of the E-Z transition. 

0 4 8 12 16 

T e m p e r a t u r e ,  T ( K  1 

Figure 2. The upper critical field for MJR Nb3Sn as a function of temperature. 



Defects in the superconducting flux-line lattice 3543 

For the three-parameter fits, a direct determination of pI ,  I, and p was initially made 
using a non-linear least-square program. A smooth set of curves was then drawn through 
pI ,  Z, and p. In order to break any correlation between these three parameters, two- 
parameter fits were then completed by holding one of the parameters fixed at this value 
on the smooth curve and using the data to determine the other two parameters. This 
iteration process does not change the initial smooth set of curves determined. However 
these solutions have a standard deviation about the smooth curves reduced by about 
30%. This additional iteration can be seen to determine values for the three parameters 
which are no longer those with the smallest 'sum of squares' but are physical values 
(obeying smooth functional forms) which are compatible with the uncertainty in electric 
field of typically k 2  pV m-'. 

6.4.  The critical current as a function offield and temperature 

In figure 1, the critical current is presented as a function of field and temperature for 
2.5 K s T < T, and 1 <B 6 15 T.  The difference between this current defined at an 
arbitrary voltage of 50 pV m-' and that obtained from the meanvalue of the distribution, 
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IC, is less than 1 A. To within the accuracy of these data there is no evidence for significant 
systematic variations throughout superconducting phase space for the electric field at 
which the mean critical current occurs. It will be shown below that the average electric 
field at which the mean critical current occurs is 55.3 pV m-'. 

6.5. The Fietz-Webb scaling law 

In figure 2 the upper critical field as a function of temperature is presented. This 
parameter has been determined by a smooth extrapolation of the critical current data to 
zero current. From this figure, two important critical parameters can be determined 

Bc2(0) = 22.4 * 1.5 T 

T ,  = 18.2 f 0.5 K. 

These values are very similar to the values found for pure, highly stoichiometric Nb3Sn 
(Foner and McNiff 1981). 

In general the Fietz-Webb scaling law is tested by normalising the pinning force to 
unity at its maximum and then plotting the reduced pinning force versus the reduced 
magnetic field at different temperatures (Fietz and Webb 1969). However for this 
particular material there is no peak in the pinning force over the range of field and 
temperature considered-thus this technique cannot be used. An alternative technique 
is to normalise the pinning force at a fixed value of reduced magnetic field. An arbitrary 
value of b (=B/Bc2( t ) )  of 4 has been chosen although the results are essentially inde- 
pendent of the value chosen. The universal curve showing the normalised pinning force 
versus the reduced magnetic field is shown in figure 3.  It is clear these data agree very 
well with a Fietz-Webb scaling law of the form 

F, = cuH&(T)[2.82 - 3.64bI for 0.2 s b s 0.7 

where (Y = 11 .2Nmm-1T-3 . '2  if Fp is the length pinning force, or a= 
1.26 N mm-3 TW3.l2 if F, is the volume pinning force, and n = 3.12. 

The high-field concave tail in figure 3 is not explicitly considered in this work but is 
generally attributed to a distribution in Bc2 (Flukiger 1984). 

6.6.  The synchronisation constant P/index n 

This part presents the empirical index n and the physical parameter /3 throughout the 
superconducting phase. An interpretation of their functional form is discussed. 

In figure 4 the index n is presented as a function of field and temperature. There are 
two features of note: (i) the index decreases as the magnetic field increases; and (ii) at 
low temperatures the index is far less sensitive to temperature changes than at high 
temperatures. 

In order to demonstrate the universality of the synchronisation constant, the values 
obtained at each temperature have been normalised to unity at Bc2( T ) / 2 .  Thus in figure 
5 the reduced synchronisation constant as a function of reduced magnetic field presents 
the universal curve that characterise these data. In figure 6 the synchronisation constant 
at Bc2( T ) / 2  as a function of temperature is plotted. It can be seen that /3 is only a function 
of reduced field for T S 10 K beyond which it decreases as the temperature increases. 
From the discusion of /3 above, the universality of /3 suggests that the component regions 
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1 4  

1 2  

of this composite obey different scaling laws of the Fietz-Webb type, where 

B(b, T )  =fi(T)gi(b) 
for all the component regions i of the composite. 

It is concluded that for T d 10 K all the component regions have the same tem- 
perature dependence as the mean critical current (i.e. f i(T) = f (  T ) ) .  For T 2 10 K, the 
decrease in B(BcZ( T ) / 2 ,  T )  at higher temperatures implies that higher critical currents 
decrease less than lower critical currents as the temperature increases. The trend in 
figure 5 can be interpreted as showing that as the reduced field increases the critical 
currents in the low-current tail of the distribution decrease by more than the critical 
currents in the high-current tail. 
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The error bars shown in figures 5 and 6 are characteristic of fluctuations in the 
temperature during the transition of about 0.1 K. However we expect the variation in 
temperature to be significantly less than this. The scatter that is seen is attributed to the 
normal distribution being only an approximation to the bell-shaped distribution that 
rigorously characterises this material. To within the error of the data considered in this 
section, in agreement with equation 14, it is clear that p and n have the same charac- 
teristics throughout the superconducting phase 
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Figure 6. The synchronisation constant, B(Bc2( T ) / 2 ,  T )  as a function of temperature for MJR 
Nb,Sn. 
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6.7. The universality of the interaction resistivity 

From the data given in figures 1 and 4, the empirical interaction length resistance R I L  

can be determined at each field-temperature point by using 

R I L ( B ,  T )  = 2nEI=Tc(I)/L 

where E = 50 pV m-l and IC is the current at 50 pV m-'. This parameter is plotted in 
figure 7 as a function of field and temperature every2 K (the interaction-length resistance 
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12 

Figure 7. The empirical interaction-length resistance as a function of field and temperature 
for MIR Nb,Sn. 
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can be converted to an interaction resistivity using avalue of 8.8 x 
of Nb,Sn.) A universal law of the form 

mm2 for the area 

RI,(b, T )  = ~l(O)bK(b)L(T/Tc) 
where lim K(b)  = 1, lim L( T/TJ  = 1 and R,(O) is a constant, can be used to characterise 

b-0 r- 0 

these data. 

0.2 0 .6  1.0 1 . 4  
- i n  i l - r i  r,i 

Figure 9. A plot of In(R*(T)) against -In[l - ( T / T c ) ]  

Full circles represent values calculated from a three-parameter fit and open circles those 
derived at 50 pV m-’ from the empirical two-parameter law. 
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In figure 8, the reduced interaction coefficient cy* is plotted as a function of magnetic 
field, where 

a* = RIL(B, T ) / R * ( T )  

and the normalisation constant R * ( T )  is 

In figure 9. In(R*(T)) is plotted against In(1 - T/TJ  where R* is determined both 
from the empirical two-parameter law and the three-parameter fit. Thus we can conclude 

R,L(B, T )  = R * ( O ) W W [ 1  - (T/T,I". 
where n = + * f and RIL(0) = 63.5 pa m-l (or equivalently for the Nb3Sn alone pI (0)  = 
5.63 x lO-'pQ cm) for the full three-parameter fit. 

That the two lines are parallel in figure 9 is a manifestation of the constancy of the 
electric field at which the mean critical current occurs. It is clear that were the empirical 
parameters determined assuming that the mean critical current occurred at 55.3 ,uV m-l, 
equation 15 would hold for both the two-parameter and three-parameter fits. 

The magnitude of the interaction-length resistance/resistivity expresses that in the 
flux-flow state when all the defects are in motion, the effective resistivity of the super- 
conductor is still many orders of magnitude less than the normal resistivity of Nb3Sn 
above T,. 

The Ohmic linearity in field as B + 0 is a feature common to both the interaction 
resistivity and the flux-flow resistivity. However at fixed reduced field the former increase 
whereas the latter decreases and the sizes of these two parameters differ for this Nb3Sn 
by seven orders of magnitude. 

It is hardly surprising that these parameters differ so starkly. The flux-flow resistivity 
describes the dissipation caused by the bulk motion of a perfect fluxon lattice through a 
defect-free superconductor. The interaction resistivity describes the motion of defects 
through an otherwise stationary fluxon lattice. 

7. Conclusion and final comments 

In conclusion we point out a very disconcerting feature of these data when compared 
with other data in the literature. In general, measurements to determine the flux-flow 
resistivity are not made on wholly defect-free systems. Since these systems have non- 
zero values for the critical current, the FLL must be distorted and defects in the FLL must 
be present. Since defect motion (of the interaction type) will occur before bulk flux flow 
it is clear that these measurements will at best characterise a resistivity which is a 
combination of the flux-flow resistivity and the interaction resistivity. This obviously 
undermines any comparison between these measurements and theoretical calculations 
of the flux-flow resistivity. 

This paper has presented data of interest in its own right for the design of high-field 
superconducting systems. A model has been outlined and experimental data detailed 
which suggest that in high-current-density materials, above the critical current, it is the 
motion of defects within the FLL that leads to voltage generation. The universality of the 
three free parameters used to describe this motion has been measured experimentally 
and interpreted. 



3552 D P Hampshire and H Jones 

References 

Baixeras J and Fournet G 1967 1. Phys. Chem. Solids 28 1541 
Bardeen J and Stephen M J 1965 Phys. Reu. 140 A1197 
Essman U and Trauble H 1967 Phys. Lett. 24A 526 
Evetts J E and Plummer C J G 1985 Proc. Int. Symp. Flux Pinning and Electromagnetic Properties in 

Superconductors (Fukuoka, Japan) 1985 ed. TMatsushita, KYamafuji andFIrie (Fukuoka: Matsukuma) 
p 146 

Fietz D H and Webb W W 1969 Phys. Reo. 178 657 
Flukiger R 1984 KFK Karlsruhe Internal Report 
Foner S and McNiff E J Jr 1981 Solid State Commun. 39 959 
Gorkov L P and Kopnin N P 1973 JETP Lett. 37 183 
Habbal F and Joiner W C H 1977 J. Low Temp. Phys. 28 83 
Hampshire D P and Jones H 1986 IEEE Trans. Magn. MT-9 531 
- 
Jones R G ,  Rhoderick E H and Rose-Innes A C 1967 Phys. Lett. 24A 318 
Kupfer H and Meier-Hirmer R 1985 Proc. Int. Symp. Flux Pinning and Electromagnetic Properties in 

Superconductors (Fukuoka, Japan) 1985 ed. TMatsushita, K Yamafuji and FIrie (Fukuoka: Matsukuma) 

1987 J .  Phys. E: Sci. Instrum. 20 516 

P 50 
Plummer C J G and Evetts J E 1986 ASC, Baltimore, Report MF-6 to be published 
Singh 0, Curzon A E and Koch C C 1976J. Phys. D: Appl. Phys. 9 611 
Smathers D B, Marken K R, Lee P J and Larbalestier D C 1984 IEEE Trans. Magn. M-21 1133 
Tinkham M 1964 Phys. Reu. Lett. 13 804 
Walter C R 1974 Brookhauen Laboratory Informal Report BNL 18928 (AADD 74-2) 30-1 
Warnes W H and Larbalestier D C 1986 Cryogenics 26 632 


