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Abstract
The engineering critical current density (JE) and the index of transition, N
(where E = αJN ), of a Nb3Al multifilamentary strand, mass-produced as a
part of the Fusion programme, have been characterized as a function of field
(B), temperature (T ) and strain (ε) in the ranges B � 15 T, 4.2 K � T � 16 K
and −1.79% � ε � +0.67%. Complementary resistivity measurements were
taken to determine the upper critical field (BC2(T , ε)) and the critical
temperature (TC(ε)) directly. The upper critical field defined at 5%ρN,
50%ρN or 95%ρN, is described by the empirical relation
B
ρN
C2 (T , ε) = B

ρN
C2 (0, ε)

[
1 − (

T
/
T
ρN

C (ε)
)ν]

. The upper critical field at zero
Kelvin and the critical temperature are linearly related where
B
ρN
C2 (0, ε) ≈ 3.6T ρNC (ε)− 29.9, although strictly BρNC2 (0, ε) is a

double-valued function of T ρNC (ε). JE was confirmed to be reversible at least
in the range −0.23% < ε < 0.67%. The JE data have been parameterized
using the volume pinning force (FP) where FP = JE × B =
A(ε)BnC2(T , ε)b

p(1 − b)q and b = B/BC2(T, ε). A(ε) is taken to be a
function of strain otherwise the maximum value of FP (found by varying the
field) was a double-valued function of BC2 when the temperature was fixed
and the strain varied. To achieve a very high accuracy for the
parameterization required by magnet engineers (∼1 A), the data were
divided into three temperature–strain ranges, BC2(T , ε) described by the
empirical relation and the constants p, q, n and ν and the strain-dependent
variables A(ε), BC2(0, ε) and TC(ε) treated as free-parameters and
determined in each range. A single scaling law that describes most of the JE
data has also been found by constraining BC2(T , ε) using the resistivity data
at 5%ρN where ν = 1.25, n = 2.18, p = 0.39 and q = 2.16. When BC2(T , ε)
is constrained at 50%ρN or 95%ρN, the scaling law breaks down such that p
and q are strong functions of temperature and q is also a strong function of
strain. Good scaling provides support for identifying B5%ρN

C2 (T , ε) as the
characteristic (or average) upper critical field of the bulk material. The JE
data are also consistent with a scaling law that incorporates fundamental
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constants alone, of the Kramer-like form

FP = 1

249

[BC2(T , ε)]
5
2

(2π�0)
1
2μ0κ2(T , ε)

b
1
2 (1 − b)2,

where the Ginzburg–Landau (GL) parameter κ is given by the relation

κ(T , ε) = 924
BC2(T , ε)

γ
1
2 (ε)TC(ε)(1 − t2)

,

γ is the Sommerfeld constant and t = T/TC(ε). At an applied field equal to
the upper critical field found from fitting the Kramer dependence (i.e. at
BC2(T , ε)), the critical current is non-zero and we suggest that the current
flow is percolative. The functional form of FP implies that in high fields the
grain boundary pinning does not limit JE, this is consistent with
JE-microstructure correlations in other superconducting materials.

1. Introduction

At present, Nb3Sn conductors are the materials of choice
for high-field applications above 12 T. Although it has been
long understood that stoichiometric Nb3Al and Nb3(AlX)
(X = Ge or Cu) have superior critical temperature (TC)
and upper critical field (BC2) to Nb3Sn [1–5], only recently
have fabrication techniques improved sufficiently for Nb3Al
to emerge as a practical alternative to Nb3Sn. Nb3Al
conductors offer the potential for less sensitivity to stress
(the Young’s modulus is about a factor of 2 higher), strain
[6–11] and have similar sensitivity to neutron irradiation
[12]. Long lengths of the Nb3Al conductor investigated in
this work have been developed, mass-produced and supplied
by the Japanese Atomic Energy Research Institute (JAERI)
within the framework of the International Thermonuclear
Experimental Reactor Engineering Fusion Design Activity
(ITER-EFDA) [13, 14]. The conductor contains off-
stoichiometric Nb3Al with slightly lower critical parameters
than Nb3Sn. Nevertheless, because strain tolerance is at a
premium in large-scale systems (particularly if they are
fabricated using react-and-wind techniques [15]), the
engineering critical current density (JE: the critical current
(IC) divided by the entire cross-sectional area of the wire of
diameter 0.81 mm) is now sufficiently high to make the strand
a candidate for large-scale fusion systems.

To properly optimize the design of high-field magnet
systems, the strain tolerance of the conductor must be known.
Large Lorentz forces strain the conductor when the system
is energized as does the differential thermal compression
between component parts of the strand and/or cable on cooling
it to cryogenic temperatures. In most of literature on the
strain tolerance of technological conductors, the sample is
measured when immersed in a cryogenic liquid including the
work on Nb3Sn [16], NbTi [17, 18], PbMo6S8 [19, 20], YBCO
[21] and BiSCCO [22–25]. However, with the increasing
importance of cryocooled and cable-in-conduit systems which
operate over a range of temperatures, design engineers need
to know how the strain tolerance of conductors in high fields
changes as a function of temperature. Such combined variable-
temperature, variable-strain measurements of JE(B, T , ε)
have been reported for Nb3Sn [26, 28] and recently proven
useful in providing a unified scaling law for JE(B, T , ε) in a

small diameter (0.3 mm) Nb3Sn wire [7, 8]. Measurements on
Nb3Al are less extensive. High-field variable-temperature data
(at constant strain) [29–31] or variable-strain data (at constant
temperature) [10, 11] have been reported. To the authors’
knowledge, this is the first report of detailed JE(B, T , ε) data
for a technological Nb3Al conductor.

The critical science that underpins JE in bulk
polycrystalline A15 superconducting materials such as Nb3Sn
and Nb3Al is still not properly understood. The semi-empirical
Fietz–Webb [32] scaling law for the pinning force, Fp =
JE×B = A[BC2(T )]nbp(1−b)q where p and q are constants,
has proven useful to parameterize JE data. However the free
parameters are strongly correlated. Although the distribution
of BC2 in bulk A15 materials is much smaller than that of the
highly anisotropic high-temperature superconductors [33], the
data presented in this work show that a change in BC2 of only
1 T can cause p and q to double! In the literature, there have
broadly been three approaches to break the correlation, in part
driven by the experimental challenges of the measurements.
Firstly, p and q have been constrained at the Kramer values
[34] p = 0.5 and q = 2. This widely used approach has
been successfully used to parameterize both the variable-
temperature and the variable-strain data on technological
Nb3Sn and Nb3Al conductors where BC2 is typically 25–30 T
[27, 28, 35–39]. However, because this approach ignores
the low JE data at the highest fields (i.e. the high-field tail),
it is not clear to what degree this parameterization is valid
or unique. Secondly, resistivity measurements have been
used to measure T ρC (ε) and BρC2(T , ε) directly and p and q
treated as free parameters to describe the JE data [26, 31].
Detailed measurements have been reported on a high bronze–
Nb3Sn model monofilament at high temperatures where BC2

is relatively low. Whether this approach can be used for
technological conductors is to be addressed in this work.
Thirdly, all possible values of p and q are considered. Usually,
JE data are measured over as broad a field range and as close to
BC2 as possible and then fitted [7, 16]. This generally provides
an accurate parameterization of the high-field tail. However,
it is unclear how to interpret the non-half-integral values of
p and q or to what degree the parameterization is unique.
In the work presented here, a comparison between these
different approaches is provided and their relative merits are
discussed.
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Figure 1. Cross-sectional view of the Nb3Al strand [13, 42].

Engineering critical current measurements and comple-
mentary resistivity measurements as a function of magnetic
field, temperature and strain are presented in this paper on a
technological Nb3Al strand. Section 2 presents the experimen-
tal procedure used to prepare and measure the Nb3Al strands.
Improved temperature control allows the measurements to be
performed up to 200 A at 4.2 K, and 80 A at temperatures
above 4.2 K to a stability of ±5 mK, with an overall uncer-
tainty in temperature of 100 mK. Improvements in the electric
field sensitivity resulting in a typical noise level of ±1μV m−1

allow reliable measurements of the index, N, of the E–J tran-
sition (where E = αJN ). The strain range is from −1.79%
to 0.67% provided by a helical bending spring [36, 40], rather
than free-standing axial tension measurements [16, 41], so
large compressive strains can be applied to vary the funda-
mental properties and test for scaling of JE in the conductor
over as wide a range as possible. The results from these mea-
surements are presented in section 3 along with a comparison
with other data in the literature. Three different approaches
have been taken to analyse the data. Initially, a technologi-
cal fit that includes part of the high-field tail is presented in
section 4. This accurately parameterizes the critical current
data above 1 A and is useful for high-field applications such
as the ITER coils. Secondly, a single unified temperature and
strain scaling law of the Fietz–Webb form [32] is presented in
section 5, which includes a self-consistent interpretation of the
tail and can be used to address the underlying mechanism that
determines JE. Thirdly, a scaling law that explicitly includes
the Ginzburg–Landau parameter (κ) is considered. Although
κ is not measured directly in transport measurements, it must
be included in any complete description of scaling. A discus-
sion of this work is presented in section 6 with the summary
and conclusions in section 7.

2. Experimental details

2.1. Sample preparation

The strands measured in this study were Sumitomo Cr-plated
jelly-roll Nb3Al strands of 0.81 mm diameter [13, 42]. The
strands contain 96 filaments of 54 μm diameter and have a Cu
to non-Cu ratio of 1.4. A micrograph of the cross-section of the
strand is shown in figure 1. The strands were heat-treated in a
high homogeneity furnace at 750 ◦ C for 50 h. This reaction was
performed in a high purity argon atmosphere with the samples
mounted on a stainless steel (type 316) mandrel. Temperature
was monitored during the reaction using a compensated Type
N thermocouple that provided an estimated accuracy of ±4 ◦C.

Electrical transport measurements were made using a
copper beryllium spring sample holder. In order that the strand
could be soldered to the CuBe spring, the chrome plating
was removed from the strand by etching in an ultrasonic HCl
bath for approximately 3 h. The sample was then carefully
transferred onto the CuBe spring using a jig. The surface of
the spring was then partially electroplated with copper using
a copper sulfate/sulfuric acid bath. This closed up any gaps
between the strand and the spring and provided a current shunt
to protect the strand from burn-out during critical current
testing. Typically, a current of 180 mA for 20 h deposited
sufficient copper. Finally, the sample was soldered to the
spring and current leads and voltage taps attached.

2.2. Measurement procedure

2.2.1. Experimental apparatus. Critical current (IC(B, T , ε))

measurements and resistivity measurements to obtain the
upper critical field

(
B
ρ

C2(T , ε)
)

were performed. The basic
principles of the probe design and measurement have been
described in detail elsewhere [43]. A helical bending spring
based on the design of Walters et al was used to apply strain to
the sample [40]. Tensile and compressional strain was applied
to the sample by twisting the spring on which the sample was
mounted. The uncertainty in the strain values quoted is less
than 10−4.

A helical bending spring has several advantages over
short-length sample measurements [16, 26, 36]. Firstly, the
longer measuring length allows lower E-field sensitivity to be
achieved. Indeed, recently we have reported measurements
with a noise of ∼0.2 μV m−1 [44]. The voltage taps are well
separated from the current leads, which minimizes current
transfer voltages that arise from the current not fully having
transferred from the matrix into the filaments [45]. A typical
current transfer length for a Nb3Sn conductor is 30d, where d
is the diameter of the conductor [46] although in short-length
sample measurements first-order corrections can be made if
necessary [47]. Furthermore, concerns as to whether the
measurements are representative of the strand in operation,
if the measurement length is less than the twist pitch (typically
10 mm) of the filaments in the strand, are avoided.

CuBe was used for the spring rather than Ti [40], Ti coated
with Cu and a Ag/Cu solder [28] or brass [36]. CuBe has a high
limit of elasticity, matches reasonably well the coefficient of
thermal expansion of many A15 conductor composites (which
often include copper for electrical and thermal stability and
bronze) [43] and can be soldered directly. When the sample is
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soldered, it has the advantage over free-standing samples
[16, 26] of allowing both tensile and compressive measure-
ments [36, 40] as presented in this work. However, additional
measurements or calculations are required to determine the
strain-free state. If the sample is only soldered at the ends of
the spring but not soldered in the central (voltage tap) region,
measurement of the torque applied allows one to determine
the properties of the strain-free state directly by measuring
JE just prior to the sample tightening significantly on the
spring [48]. Although the (tensorial) strain applied is different
in free-standing measurements and spring measurements,
comparison of data obtained from different techniques shows
that to first order the strain dependence of the critical current
in the different configurations is the same [49]. Furthermore,
we suggest that the spring geometry offers a more realistic
configuration for the strain present in high-field magnets.

In the probe, the spring is situated in an isolated enclosure
which incorporates high current lead-throughs [50] to enable
variable-temperature measurements [51]. A copper gasket
seal maintains the vacuum integrity of this environment and
sustains the applied torque [43]. The spring design also
facilitates accurate temperature control by separating the
current transfer regions, where heat is generated, from the
section of strand measured.

2.2.2. Improvements to the strain probe and overall accuracy.
The current carrying capacity of the probe has been increased
by adding more superconductor, brass and copper to the
original leads. Thick brass current leads [52] were used at
the top of the probe where the temperature varies from room
temperature to 4.2 K. The cross-sectional area of the brass
for each lead was 100 mm2, and incorporated four 0.3 mm
diameter Cu/Ni NbTi wires soldered in parallel along the
entire length. The brass leads were connected to the external
current terminals by eight 1 mm diameter copper wires, and at
the bottom to the high-current lead-throughs (into the isolated
variable-temperature enclosure) by four 1 mm diameter copper
wires and four 0.36 mm diameter Cu–NbTi wires soldered in
parallel. Below the lead-throughs two thicker oxygen-free
high-conductivity (OFHC) copper cylindrical current leads
were used in the enclosure to reduce heating around the spring.
Four Ag-sheathed BiSCCO tapes were soldered in parallel on
both cylindrical current leads to further reduce heating. The
cylindrical current leads were connected to the spring and the
high-current lead-throughs using four short lengths of 0.8 mm
diameter copper wire per current lead.

To improve the temperature control during the measure-
ments, three Cernox thermometers, which were all calibrated
commercially in zero field, were mounted directly along
the strand on the surface of the spring. Although these
thermometers have low magnetic field dependence, there is
typically an 80 mK correction at 4.2 K in magnetic fields up to
10 T [53–55]. The central control thermometer was calibrated
in-house in fields up to 15 T at temperatures between 4.2 K and
20 K, as shown in figure 2 and the field-dependence accounted
for in setting the temperature. The temperature along the
sample was set using three independent heaters positioned
concentrically about the spring. The stability of the tempera-
ture during both critical current and resistivity measurements
is estimated to be <5 mK. The improved temperature control
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Figure 2. Temperature correction as a function of applied magnetic
field for the Cernox thermometer used to control the temperature for
measurements above 4.2 K. T0 is the temperature of the
thermometer in zero magnetic field. The lines are guides to the eye.

and new current leads facilitate measurements of currents up
to ∼200 A at 4.2 K and ∼80 A at temperatures above 4.2 K,
although the static boil-off of the probe has now increased
by about 15%. It is estimated that the overall accuracy of
the JE data is equivalent to an uncertainty in temperature of
±100 mK. At 4.2 K, the strand is immersed directly in liquid
helium with commensurately smaller overall errors.

2.2.3. Experimental method. The data acquisition
followed standard procedure [45, 56]. At fixed magnetic
field, temperature and strain, the current through the sample
was slowly increased and the voltage across the sample
monitored using a standard four-terminal V –I configuration.
When the V –I transition had been recorded, IC was extracted
at a criterion of 10 μV m−1 or 100 μV m−1 and JE calculated
and stored digitally. The measurement was then repeated as
a function of magnetic field. Thereafter the temperature was
changed and JE remeasured throughout the field range. The
current flow direction ensured that the Lorentz force pushed
the strand into the sample holder. Typical noise levels were
±1 μV m−1. When the upper critical field

(
B
ρ

C2(T , ε)
)

was
less than 15 T, resistivity was measured as a function of field
at different temperatures. A lock-in amplifier was used to
provide the excitation current, at 76 Hz, and measure the
generated voltage. Three different currents were used to
measure the resistivity namely, 82 mA, 28 mA and 6.5 mA.
The strain was then changed and JE and resistivity measured
again as a function of field and temperature. This process was
repeated to obtain JE and BρC2(T , ε) in the strain range from
−1.79% to +0.67%.

Critical current measurements were made in a decreasing
magnetic field at 4.2 K on the first strand (Strand A) and from
6 K up to 14 K in 2 K steps on a second strand (Strand B).
Resistivity measurements were made every Kelvin from
5 K to 16 K. Measurements were also made with the strand
in the normal state so that the non-superconducting current
flowing through the strand and the electroplated spring (i.e. the
shunt) could be determined as a function of field, temperature
and strain. All currents quoted in this paper have had this
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Figure 3. Electric field–current density characteristics for zero
strain at 4.2 K for the Nb3Al strand. The data demonstrate that
independent of criterion, JE is reversible. The strain was cycled as
detailed in the legend.

current (typically 25 mA at 10 μV m−1) subtracted from the
total current measured in order to calculate the current in the
superconductor alone [45].

3. Results

3.1. Critical current measurements

Figure 3 shows typical electric field–current density (E–J)
characteristics as a function of applied magnetic field at 4.2 K.
The data were all taken at zero strain after different strain
cycles—measured before any strain was applied, after one
cycle to −0.23% and after a second cycle to +0.45%.
The critical current density is reversible for the different strain
cycles, independent of which electric field criterion is used to
define it.

In preliminary experiments, different sections of all
strands that were subsequently measured in detail, were first
measured at zero strain and 4.2 K to test the homogeneity of the
wire. The variation in IC of strand A, subsequently measured
at 4.2 K alone, was 3.7%. The equivalent variation for strand
B was 5%. To assess any possible damage that occurred
during handling, a third strand was taken from the furnace
and retained on the reaction mandrel for measurement. The
strand was covered with a small amount of vacuum grease
(which solidifies at 4.2 K). Measurements were made as a
function of magnetic field at 4.2 K over several different
sections of the wire. The variation in IC in this case was
4.3%, and the magnitude of IC was almost identical to that
measured on the CuBe spring. We have concluded that within
the accuracy of our measurements, there is no evidence for
damage to the sample during handling.

In figure 4, JE is shown as a function of field and strains at
4.2 K are shown. The E-field criterion used to define JE over
the entire data range was 10 μV m−1. The solid lines are from
the technological fit to the data that is described in section
4. We report that a current transfer voltage was observed at
high compressive strains which only occurred when ε <−1%,
and was more pronounced when BC2 dropped below about 2
Tesla. This ohmic region in the E–J characteristic was below
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for the Nb3Al strand. The N-value is calculated using E = αJN
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5 μV m−1 at IC. It has negligible effect on the critical current
results presented in this paper, defined at 10 μV m−1.

Using the standard equation, E = αJN , the index N has
been calculated in the range from 10 μV m−1 to 100 μV m−1

and is shown in figure 5 as a function of strain at different fields
at 4.2 K. Note that the symbol, n, is often used in the literature
to denote both the index of transition of an E–J measurement,
and the exponent of BC2 in the flux pinning scaling law. In
order to avoid confusion, in this work, N will be used for the
index of transition, and n in the flux pinning scaling law. The
behaviour of JE and N with strain at different magnetic fields
is also shown at 10 K in figures 6 and 7 for comparison with
the data obtained at 4.2 K. The strain at which JE is largest
(originating from the precompression exerted on the Nb3Al
filaments from copper matrix during cooling of the sample
from reaction to measurement temperature [57]) is the same
for both temperatures. A similar systematic dependence is
noted at both temperatures for JE and N, which is consistent
with excellent temperature stability at 10 K of better than 5 mK
[58]. Log–linear plots of engineering critical current density as
a function of magnetic field throughout the entire temperature
range at ε = 0.45% and ε = –0.67% are shown in figures 8
and 9, respectively.
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3.2. Resistivity measurements

Typical resistivity data taken as a function of field at different
temperatures and ε = 0.45% are shown in figure 10. The
noise level on the measured voltage was ∼0.2 μV m−1. The
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Figure 10. Resistivity as a function of magnetic field at different
temperatures at ε = 0.45% for the Nb3Al strand. The lines show the
different criteria used to determine upper critical field and derive a
critical current density.

resistivity data have been used to calculate IC values close
to BC2 as follows: when the peak ac voltage (i.e.

√
2VRMS)

generated across the sample reaches 10 μV m−1, it is assumed
that the peak ac current (minus the shunt current) provides the
value of IC at the applied field. It was not possible to generate
IC data for the 6.5 mA excitation because even in the normal
state, the E-field generated was not sufficiently high. The
construction lines to determine both BC2 and IC are shown in
figure 10. It should be noted that the shapes of the resistivity
transition at 28 mA and 6.5 mA excitation currents are very
similar. In figures 8 and 9, the inclusion of JE obtained through
the V –I and resistivity measurements demonstrates good
agreement between the two types of measurement. Figure 11
shows the upper critical field determined at 50% of the normal
state resistivity as a function of temperature and strain from
the data obtained using 28 mA excitation current.

3.3. Comparison with other data in the literature

A comparison between data generated in Durham and that from
FzK and JAERI is shown in figure 12. Figure 12(a) shows the
normalized critical current as a function of strain at 4.2 K and
13 T from Durham and FzK [10]. At FzK, an axial pull rig is
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similar Nb3Al strands in the literature. (a) Normalized critical
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measurements performed in Durham and FzK [10]. (b) Critical
current as a function of field at various temperatures and zero strain
between Durham and JAERI [59]. The solid lines shown are the
technological fit to the data.

used to apply strain [41]. Although the strand investigated by
FzK is not identical to that studied in this paper, it is similar; so
the good agreement found is expected. A similar comparison
has been made between the data from Durham and FzK on

40

80

120

160

200

10 11 12 13 14 15

p q B
C2

      RMS Error
0.19   1.82  19.64 T    3.21 AT
 1.9     6.0     27.63 T    4.93 AT
 0.5     2.0    19.65 T    6.71 AT
 1.0     2.5     20.30 T   11.34 AT
I
C
 from measurement

Applied Field, B (T)

C
rit

ic
al

 C
ur

re
nt

, I
C
 (

A
)

-1.5

0

1.5

10 11 12 13 14 15
B (T)

ΔI
C
 (

A
)

Figure 13. Critical current as a function of applied field at 4.2 K
and ε = 0.45% for the Nb3Al strand. The lines indicate four
acceptable fits to the data using widely varying p and q. The errors
in the legend are RMS ICB errors and the sizes of the equivalent
RMS IC errors are approximately an order of magnitude smaller (i.e.
∼0.4 A and ∼1 A). The inset graph shows the difference in IC

between the data and the fits.

Nb3Sn wires and again good agreement was obtained between
both the methods [49, 59]. In figure 12(b), comparison is
made between the variable temperature data of JAERI [60]
and Durham at zero strain. We conclude that there is a
very good agreement between the three laboratories for IC

measured in overlapping field-temperature–strain conditions
using different measurement techniques.

4. Empirical parameterization of the data

The bulk pinning force density, FP = JE × B, for many
low-temperature type-II superconductors varies with field,
temperature and strain according to the semi-empirical Fietz–
Webb scaling law of the form [32, 34, 61, 62]:

FP = JE × B = C(T , ε)bp(1 − b)q (1)

where b is the reduced field (B/BC2) and p and q are constants.
For low-temperature A15 conductors, the upper critical field
data can be parameterized using the empirical equation
[8, 31, 63]:

BC2(T , ε) = BC2(0, ε)

[
1 −

(
T

TC(ε)

)ν]
(2)

where BC2(0, ε) and TC(ε) are the strain-dependent upper
critical field at 0 K and the critical temperature, respectively,
and ν is a constant. Two alternative empirical forms for the
prefactor, C(T , ε), have been considered [7, 16, 26]:

C(T , ε) = A(T )[BC2(ε)]
m (3)

C(T , ε) = A(ε)[BC2(T )]
n (4)

where A(ε or T ) is a function of strain or temperature
only. The parameter m is the strain index, and n is the
temperature index. These exponents have been named in this
way because historically m was determined from variable-
strain measurements of JE at constant temperature and n from
variable-temperature measurements of JE at constant strain.

Figure 13 shows the critical current of the Nb3Al strand as
a function of field at 4.2 K and ε= 0.45% and scaling law fits to
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the data with different values ofC,BC2, p and q. The difference
in IC between the data and the fits is about 0.5 A (shown inset)
which is within experimental error. The constants p, q andBC2

are strongly positively correlated. In the context of trying to
distinguish which mechanism determines JE, where change of
1
2 in either p or q implies a change of mechanism (for example,
surface pinning by normal precipitates leads to p = 0.5 and
q = 2 whereas point pinning gives p = 1 and q = 2 [62]),
the range of p and q values that are consistent with the data
is enormous. Although extremely good fits can be found to
parameterize the data, figure 13 demonstrates that ifBC2 is left
as a free parameter, any interpretation of a single pair of these
correlated p and q values is completely unreliable.

Nevertheless, from a magnet engineering/technological
perspective, the primary function of the unified scaling
law is to provide an accurate mathematical description of
the JE(B, T , ε) data that can be used to optimize design
parameters. Whether another equivalent functional form exists
is very much of a secondary interest. It is demonstrated in
section 5 that a greater range of data can be more accurately
parameterized using equation (4) rather than equation (3).
More specifically, the errors on the temperature index, n, are
lower than those for the strain index m. Combining equations
(1), (2) and (4), a unified empirical relation for FP is [8, 26]

FP = JE × B
= A∗(ε)

{
B∗

C2(0, ε)

[
1 −

(
T

T ∗
C

)ν]}n
bp(1 − b)q . (5)

For simplicity, it has been assumed in the fitting procedure
that the maximum in B∗

C2, T ∗
C , JE and the minimum in A∗(ε)

occur at the same strain, εM. The utility and accuracy of the
parameterization was further improved by only considering IC

data of technological importance, namely above 1 A and by
leavingB∗

C2 as a free parameter. This latter condition improves
the accuracy of the parameterization at the expense of no longer
identifying B∗

C2 with any features of the resistive transitions,
or with a characteristic field of any physical significance.

In order to obtain the fitting parameters in equation (5),
a preliminary global fit of all the data was made. The values
of A∗(ε), T ∗

C (ε) and B∗
C2(0, ε) obtained in this way were then

fitted to fourth-order polynomial functions where

A∗(εI )
B∗

C2(0, εI )
T ∗

C (εI )

⎫⎬
⎭ = c0 + c1εI + c2ε

2
I + c3ε

3
I + c4ε

4
I (6)

and cn are constants. To improve further the accuracy of the
parameterization, three different ranges of temperature–strain-
phase space were identified and fits to equations (5) and (6)
were made in each of those ranges alone. A fit of each data
set in each range was then completed with the constants in the
polynomial fits and n, ν, εM, p and q as free parameters. The
value of εM was found to be 0.131%. The parameterizations are
described in terms of intrinsic strain εI, and the applied strain
ε, where εI = ε − εM. The values found for n, p, q and ν are
shown in table 1. It is understood that one can parameter-
ize these data using a more physical form for the constants
[16, 64]; however for this technological fit we have used
polynomials because they provide the most accurate mathe-
matical description of the data. The constants in the poly-
nomial fits are shown in tables 2–4. Most of the data are
parameterized to within ±1 A of the measured values. To

Table 1. Constants derived from the technological fit to the critical
current data for the Nb3Al strand.

Data range p q n ν

4.2 K � T � 10 K, 0.845 2.740 2.301 1.323
−0.67% � ε � 0.67%

4.2 K � T � 10 K, 1.125 2.893 2.392 1.250
−1.79% � ε < −0.67%

10 K < T � 14 K, 0.787 2.756 2.249 1.403
−1.79% � ε � 0.67%

achieve this accuracy, it is clear that a single pair of p and
q values cannot be used to parameterize the entire set of
data. A comparison between the measured JE data and the
technological fit is shown as a function of temperature at
ε = 0.45% and ε = −0.67% in figures 8 and 9, respectively.
The fit only starts to break down at very high temperatures
and high compressive strains where B∗

C2 is of the order of 2 T.
Also shown in figures 8 and 9 are fits to the data whereBC2 has
been constrained at 5%ρN and 95%ρN, and p, q, n, and ν are as-
sumed single-valued throughout the entire range of data. It can
be seen that the fits constrained at 95%ρN fit the high field, low
JE tail well, but do not provide a good overall fit. On the other
hand, defining BC2 at 5%ρN provides a better overall fit to the
data at the expense of not fitting the low JE data.

The upper critical field that was determined from the
resistivity data defined at 5%, 50% and 95% of the normal
state resistivity has been parameterized using equation (2).
Values for ν are presented in table 5, along with the standard
deviation of the fit to each data set. BρNC2 (0, ε) and T ρNC (ε)

defined at 5%, 50% and 95% of the normal state resistivity have
been also parameterized using fourth-order polynomial fits and
the constants given in table 6. Figure 14 shows the scaling
of the upper critical field defined at a criterion of 50%ρN.
Good scaling of the data was also observed for BρNC2 (T , ε)

defined at 5%ρN and 95%ρN. In figures 15 and 16, T ρNC (ε) and
B
ρN
C2 (0, ε) are plotted as a function of strain. Note that for these

optimized empirical fits to the data, the strains at which T ρNC (ε)

and BρNC2 (0, ε) are maximum are found to be εM = 0.13%
and εM = 0.20%, respectively. Also shown are the effective
T ∗

C (ε) and B∗
C2(0, ε) that are derived from the technological

fit. Figures 15 and 16 allow comparison betweenBρNC2 (0, ε)
and T ρNC (ε) extracted from the parameterization of the upper
critical field data from the resistivity measurements and the
technological fit to the critical current data. There is no
simple relation between BC2 derived from these different
measurements. The data from the resistivity measurements
in figures 15 and 16 have been replotted in figure 17. The
linearity and double-valued behaviour has also been observed
in Nb3Sn (derived from extrapolating JE values to zero)
[8, 65]. In both materials, the linearity had a positive gradient
and negative intercept on the BρNC2 (0, ε) axis.

5. A single scaling law

To proceed beyond the empirical scaling laws, we need to
break the strong correlation between p, q and BC2. This can
be done, in principle, by measuring BC2 resistively. However,
technological conductors are not homogeneous. Inevitably,
the field at which the critical current density drops to zero
represents the upper critical field for the percolative path
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Table 2. Free parameters for the technical parameterization in the range −0.67% � ε � +0.67%,4.2 K � T � 10 K for the Nb3Al strand.

−0.67% � ε � +0.67%,
4.2 K � T � 10 K A∗(ε)(A−2 T−2.301) B∗

C2(0, ε) (T) T ∗
C (ε) (K)

c0 3.942 × 107 26.26 15.81
c1 0 0 0
c2 5.424 × 1010 −3.264 × 104 −1.255 × 104

c3 −3.096 × 1012 6.521 × 105 2.202 × 105

c4 −3.608 × 1014 1.156 × 108 4.190 × 107

Table 3. Free parameters for the technical parameterization in the range −1.79% � ε < −0.67%, 4.2 K � T � 10 K for the Nb3Al strand.

−1.79% � ε < −0.67%,
4.2 K � T � 10 K A∗(ε) (A−2 T−2.392) B∗

C2(0, ε) (T) T ∗
C (ε) (K)

c0 2.552 × 107 23.18 12.52
c1 −3.567 × 109 −1.535 × 103 −1.126 × 103

c2 −2.028 × 1011 −2.617 × 105 −1.459 × 105

c3 −6.839 × 1012 −1.382 × 107 −7.206 × 106

c4 −1.250 × 1014 −2.524 × 108 −1.307 × 108

Table 4. Free parameters for the technical parameterization in the range −1.79% � ε � +0.67%, 10 K < T � 14 K for the Nb3Al strand.

−1.79% � ε � +0.67%,
10 K < T � 14 K A∗(ε) (A−2 T−2.249) B∗

C2(0, ε) (T) T ∗
C (ε) (K)

c0 4.455 × 107 25.88 15.49
c1 0 0 0
c2 4.416 × 1010 −3.024 × 104 −1.017 × 104

c3 3.244 × 1012 5.446 × 105 −1.737 × 105

c4 7.452 × 1013 6.801 × 107 5.646 × 105

Table 5. Upper critical field scaling law parameter (ν) derived from
the resistivity data and the standard deviation on the fit to the data
for the Nb3Al strand.

Upper critical field ν Standard
defined at (dimensionless) deviation (mT)

5%ρN 1.25 38.9
50%ρN 1.27 33.5
95%ρN 1.31 30.2

through the material with the highest BC2. This highBC2 value
is not representative of the material. Physical interpretation
of the JE data is required to eliminate non-physical solutions,
identify a characteristic value ofBC2 (where the critical current
may not be zero) and hence identify a scaling law that can be
used to address the science that underlies the mechanism that
determines the critical current density.

In figure 18, RMS ICB error surfaces are shown for p and
q derived from the variable magnetic field data at 4.2 K for
(a) ε = 0.45%, at 8 K for (b) ε = −1.79% and at 10 K for
(c) ε = 0.45% and (d) ε = −1.79%. The ranges of the fields
over which these data were taken were (a) 10.5–15 T, (b) 8.5–
15 T, (c) 6–11.5 T, (d) 2.5–7 T, respectively. The solid contours
are logarithmically separated for each decade as indicated in
the legend and the dashed contour shows the approximate
maximum RMS ICB error that still provides an acceptable fit.
From the fit to the data, BC2 and C values are also generated.
The figure shows solid curves giving p–q pair-values whenBC2

takes the value determined from the resistivity measurements
at 5%ρN, 50%ρN and 95%ρN. The upper critical field values
at 4.2 K are extrapolated values from the parameterization
detailed above (see equation (2)). Across the entire data set, a

Table 6. Free parameters for the technical parameterization of the
upper critical field data for the Nb3Al strand.

T
ρ

C (ε) (K)
defined at 5%ρN 50%ρN 95%ρN

c0 15.63 15.78 15.91
c1 0 0 0
c2 −1.040 × 104 −9.736 × 103 −9.853 × 103

c3 −9.337 × 104 −1.832 × 105 −1.769 × 105

c4 7.034 × 106 2.622 × 106 3.564 × 106

B
ρ

C2(0, ε) (T)
defined at 5%ρN 50%ρN 95%ρN

c0 26.53 27.08 27.48
c1 0 0 0
c2 −3.529 × 104 −3.908 × 104 −3.755 × 104

c3 −4.971 × 105 −8.122 × 105 −7.018 × 105

c4 1.876 × 107 1.192 × 107 1.364 × 107

large shallow minimum in the error surface is found, leading
to a wide range of p and q values consistent with the results
shown in figure 13. The area of this shallow region is larger
at 4.2 K and 6 K where it is not possible to measure close to
BC2. At higher temperatures, where measurement of BC2 is
possible, the minimum in the error surface tends to coincide
with the upper critical field defined at 95%ρN, but the allowed
range of p and q values is still very large.

The data from 8 K to 14 K, where the upper critical field
was directly measured, were then refitted with p, q and C
left unconstrained and BC2 constrained to the value at 5%ρN,
50%ρN or 95%ρN. The values of p and q obtained are shown
in figures 19 and 20, respectively, with averages denoted by
the horizontal lines at each temperature. The data constrained
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Figure 15. Effective critical temperature as a function of applied
strain for the Nb3Al strand. The solid symbols represent data
obtained from the ac resistivity measurement of BC2. The open
symbols are derived from the technological fit to the critical current
data. The lines are fourth-order polynomial fits that parameterize
the data.

at 5%ρN are single valued—independent of temperature and
strain within the errors of the measurement. The average
values of p and q are p = 0.39 ± 0.19 and q = 2.16 ± 0.10. For
BC2 constrained at 50%ρN and 95%ρN, p and q are both strong
functions of temperature and q is also a function of strain.
The average values of p and q obtained for BC2 constrained
at 5%ρN, 50%ρN or 95%ρN at each temperature are shown
in table 7. We conclude that the value of BC2 determined at
5%ρN is required for p and q to be constant and hence for FP

to scale accurately.
Since the values of p and q that produce good scaling are

close to the Kramer values [34] of p = 0.5 and q = 2 that are
very widely used [27, 28, 35, 37–39, 66, 67], this paper also
considers the implications of making the assumption that they
are valid. The JE data presented in figures 8 and 9 have been
replotted on a Kramer plot in figures 21 and 22. The straight
line fits to the Kramer plots have been generated by ignoring
the IC data below 5 A (9.7 × 106 A m−2). Also shown are the
values for BC2 obtained from the resistivity measurements.
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The extrapolated Kramer BC2 value is typically 300 mT less
than that defined at 5%ρN.

Using p = 0.39, q = 2.16 and constraining BρNC2 (T , ε) at
5%ρN, the form of the prefactor can be determined from log–
log plots of C as a function of BρNC2 . Figure 23 plots C(ε) as
a function of BρNC2 (ε) at constant temperatures to give m. The
data have been normalized for clarity and show in detail the
technologically important region from about −0.5% � ε �
0.67%. The inset graph shows the entire data set. Figure 24
provides C(T ) as a function of B5%ρN

C2 (T ) at constant strain
which gives n. Here each data set is offset from the previous
one by log10(C) = −0.2. In both figures, at high compressive
strains and at 14 K linearity breaks down. It can be seen that
m and n are almost independent of temperature. In the ranges
−0.5% � ε � 0.67% and 8 K � T � 12 K, m = 1.87 ± 0.08
and n = 2.18 ± 0.02. The associated parameters A(ε) and
A(T ) are presented in figure 25. The error in m is a factor
4 higher than n. This primarily occurs because at constant
strain (when varying temperature) the prefactor C is a unique
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Figure 18. RMS ICB error surface plots as a function of p and q from fitting to the data at (a) 4.2 K and ε = 0.45%, (b) 8 K and ε = −1.79%,
(c) 10 K and ε = 0.45% and (d) 10 K and ε = −1.79% for the Nb3Al strand. The dashed line indicates the maximum RMS error for an
acceptable fit. The solid curves give p, q pair-values when the upper critical field is constrained by BC2 from the resistivity data. The
contours on the error surface are logarithmically spaced per decade as indicated in the legend.

function of BC2, whereas C is a double-valued function of BC2

(with varying strain) at constant temperature as shown by the
arrows in figure 23 and also found in Nb3Sn [65]. Hence, the

parameterization of the prefactor C is most accurately achieved
in the form of equation (4) as found for Nb3Sn [7, 8]. Note
that when p and q are fixed, C is proportional to the maximum
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Figure 19. Scaling law exponent, p, as a function of strain for the
Nb3Al strand. The data were obtained from a fit constrainingBC2 at
(a) 5%ρN, (b) 50%ρN and (c) 95%ρN. The solid lines show average
values for the data in the range −1.79% � ε � 0.67%.

value of FP found when varying magnetic field. In figure 26,
a log–log plot of C(T , ε) as a function of BC2(T , ε) is
presented. The values of BC2 at 4.2 K and 6 K are extrapolated
values derived from the parameterization using equation (2).
Equivalent data derived from the Kramer plots are also shown
in figure 26 (offset by log10(C) = −1). This analysis therefore
leads to a scaling law given by

FP = A(ε)
[
B

5%ρN
C2 (T , ε)

]2.18
b0.39(1 − b)2.16 (7)

or for the Kramer parameterization n = 2.30 ± 0.14.
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Figure 20. Scaling law exponent, q, as a function of strain for the
Nb3Al strand. The data were obtained from a fit constrainingBC2 at
(a) 5%ρN, (b) 50%ρN and (c) 95%ρN. The solid lines show average
values for the data in the range −1.79% � ε � 0.67%.

Although one can parameterize C using equation (7) or
an equivalent Kramer form, it is clear that any complete
description of FP must include the Ginzburg–Landau
parameter, κ(T, ε). Unfortunately κ is not measured in
transport measurements directly. Nevertheless we now
consider how to incorporate κ into the scaling law. Using
the equation for the thermodynamic critical field at zero
temperature BC(0, ε) = 7.65 × 10−4γ

1
2 TC(ε) [68] with the

two-fluid model for the temperature dependence BC(T , ε) =
BC(0, ε)[1 − t2] and the Ginzburg–Landau relation for the

1002



The JE(B, T , ε) scaling law in a Nb3Al strand

Table 7. Average values of p and q as a function of temperature for the Nb3Al strand from the fits to the data in the strain range −1.79% � ε
� 0.67% where BC2 is constrained by resistivity measurement.

BC2 defined at 5%ρN BC2 defined at 50%ρN BC2 defined at 95%ρN

T (K) p q p q p q

8 0.45 ± 0.23 2.22 ± 0.08 1.46 ± 0.19 3.06 ± 0.13 2.42 ± 0.30 4.00 ± 0.13
10 0.37 ± 0.21 2.17 ± 0.11 1.10 ± 0.21 3.03 ± 0.14 1.73 ± 0.30 3.93 ± 0.15
12 0.32 ± 0.17 2.12 ± 0.09 0.74 ± 0.09 3.01 ± 0.19 1.08 ± 0.15 3.85 ± 0.16
14 0.42 ± 0.14 2.13 ± 0.10 0.63 ± 0.05 2.99 ± 0.11 0.76 ± 0.04 3.81 ± 0.18
Global fit 0.39 ± 0.19 2.16 ± 0.10 n/a n/a n/a n/a
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Figure 21. Kramer plot as a function of temperature at ε = 0.45%
for the Nb3Al strand. The solid lines are fits to the data using a
Kramer analysis. The dashed lines indicate the upper critical field
defined at 5%ρN, 50%ρN and 95%ρN.
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Figure 22. Kramer plot as a function of temperature at ε = −0.67%
for the Nb3Al strand. The solid lines are fits to the data using a
Kramer analysis of the data. The dashed lines indicate the upper
critical field defined at 5%ρN, 50%ρN and 95%ρN.

upper critical field BC2(T , ε) = √
2κ(T , ε)BC(T , ε), an

empirical relation for κ has been found of the form [35, 69]

κ(T , ε) = BC2(T , ε)√
2BC(T , ε)

= 924
BC2(T , ε)

γ
1
2 (ε)TC(ε)[1 − t2]

(8)

where t = T/TC(ε) and γ is the Sommerfeld constant. In
figure 27, κγ 1/2 is plotted as a function of strain. TC(ε) has
been calculated from the fit to the B5%ρN

C2 (T , ε) data using

equation (2). There is a systematic dependence for γ 1/2κ in
the data as a function of strain and temperature except close
to TC. Equation (8) can be rewritten using equation (2) and
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Figure 23. Normalized log–log plot of the scaling law prefactor, C,
against upper critical field as a function of strain at constant
temperature for the Nb3Al strand. The data were obtained from a fit
constrainingBC2 at 5%ρN. CM and BC2M are the maximum values
for the prefactor and upper critical field, respectively. The main
graph shows data typically in the strain range 0.5 � ε � 0.67% and
the inset shows the entire data set. The solid line gives a global
average for m. The dashed line indicates the hysteresis on the 8 K
data. The arrows indicate decreasing strain.
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Figure 24. Offset log–log plot of the scaling law prefactor, C,
against upper critical field as a function of temperature at constant
strain for the Nb3Al strand. The data were obtained from a fit
constrainingBC2 at 5%ρN. Each curve is offset from the one above
by 0.2. The solid lines give a global average for n.

L’Hospital’s rule [70] to provide a form useful for considering
the temperature dependence for κ of the form

κ(T , ε)

κ(TC, ε)
= 2

ν

[1 − tν ]
[1 − t2]

. (9)
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Figure 25. Prefactor (a) A(ε) as a function of strain and (b) A(T ) as
a function of temperature from fits constraining upper critical field at
5%ρN for the Nb3Al strand. The dashed lines are guides to the eye.
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Figure 26. Log–log plot of the scaling law prefactor, C, against
upper critical field as a function of strain at constant temperature
generated using BC2 constrained at 5%ρN and from a Kramer
analysis of the data for the Nb3Al strand. The solid lines are defined
by the equations in the figure. The data from the Kramer analysis
have been offset by log C = −1.

To evaluate κ(TC, ε), equation (8) can also be rewritten using
L’Hospital’s rule to give

κ(TC, ε) = 924
BC2(0, ε)

γ
1
2 (ε)TC(ε)

ν

2
. (10)

Using the strain dependence of BC2(0, ε) and TC(ε) given in
table 6, and the value for ν in table 5, the resulting dependence
of γ

1
2 (ε)κ(TC, ε) can be found. This has been plotted in

figure 27 as a solid line. In order to calculate a value of κ ,
γ is required. Measurements on bulk Nb3Al [71, 72] and
thin films with varying stoichiometry [73] give a typical value
for the Sommerfeld coefficient for the electronic specific heat
in Nb3Al of 720 ± 50 J K−2 m−3. This leads to value for
κ(TC, ε = 0) calculated to be 36.5 ± 1.3 which can be
compared to a value of ∼33 for Nb3Sn [74]. The data
in figure 27 have been normalized at TC and replotted in
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Figure 27. The parameter γ 1/2κ as a function of strain and
temperature for the Nb3Al strand when BC2 is defined at 5%ρN. The
Ginzburg–Landau parameter is κ and γ is the Sommerfeld constant
for the electronic specific heat. The solid line plots the calculated

value of γ 1/2κ at T = TC.
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Figure 28. Normalized κ as a function of reduced temperature for
the Nb3Al strand, a commercial NbTi strand (taken from resistivity
data) [74], a commercial (NbTa)3Sn strand (taken from a Kramer
extrapolation to JC data) [34] and a high purity Nb sample (from
magnetocaloric data) [75]. The upper and lower solid lines are
calculated using ν = 1.25 and ν = 1.72 respectively.

figure 28. Figure 28 includes normalized kappa values derived
using BC2 from the Kramer plots for the Nb3Al strand; values
derived from the literature for (NbTa)3Sn [35], and NbTi [75];
solid lines showing equation (9) for different values of ν; and a
dashed line giving experimental data for Nb from the literature
[76]. The different A15 compounds show similar temperature
dependencies. In figure 29, Cκ2γ is plotted as a function of the
upper critical field and temperature at different strains on a log–
log plot. The data at each strain were individually fitted using a
linear function. The gradient was found to be n = 2.60 ± 0.06
with an intercept of Cκ2γ = (1.44 ± 0.25) × 1013 J2 K−2 m−7.
The equivalent data using the Kramer analysis have also been
plotted in figure 29, but offset by log10(Cκ2γ ) = −1. This
procedure was repeated for the Kramer analysis resulting in
n = 2.53 ± 0.12 and an intercept of Cκ2γ = (1.62 ± 0.70) ×
1013 J2 K−2 m−7. The linearity of the data in figure 29 implies
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Figure 29. Log–log plot of Cκ2γ as a function of upper critical field
and temperature at different strains generated using BC2 constrained
at 5%ρN and from a Kramer analysis of the data for the Nb3Al
strand. The solid lines are lines of best fit to the entire data sets. The
data from the Kramer analysis have been offset by log Cκ2γ = −1.

that to a good approximation

C(T , ε) = G(ε)
[
B

5%ρN
C2 (T , ε)

]2.60

κ2(T , ε)γ (ε)
. (11)

Hence the temperature dependence of C(T, ε) is accurately

characterized by the factor

[
B

5%ρN
C2 (T ,ε)

]2.60

κ2(T ,ε)
. There is no need for

any additional temperature-dependent terms. Uncertainty in
the intercept values in figure 29 gives an uncertainty in G(ε)
of about 15%. G(ε), n and TC(ε) are tabulated as a function of
strain in table 8 for the analysis where BC2 is defined at 5%ρN

using p = 0.39 and q = 2.16 and the Kramer analysis using p =
0.5 and q = 2. G(ε) is very broadly consistent with an inverse
parabola with a value about 40% lower at strong compression
than its peak value at 0.11% strain. To the author’s knowledge,
the uniaxial strain dependence of the Sommerfeld constant (or
density of states at the Fermi surface) in Nb3Al has not been
reported. However, hydrostatic measurements on Nb3Sn [77]
show that a change in TC of ∼0.35 K produces a change in
γ (ε) of ∼8%. In the strain measurements presented here on
Nb3Al, TC changed by about 2 K, so we tentatively attribute the
40% change in G(ε) to the strain dependence of γ (ε). Hence
assuming γ (ε = 0) = 720 J K−2 m−3, equation (7) becomes

FP = 1

337

[
B

5%ρN
C2 (T , ε)

]2.60

(2π�0)
1
2μ0κ2(T , ε)

b0.39(1 − b)2.16 (12)

or for the Kramer analysis in which IC values below 5 A are
ignored, and n (which when treated as a free parameter has the
value 2.53) is set to 5

2 , gives

FP ≈ 1

249

[BC2(T , ε)]
5
2

(2π�0)
1
2μ0κ2(T , ε)

b
1
2 (1 − b)2. (13)

Both equations (12) and (13) provide expressions for Fp,
which are dependent only on fundamental constants. For the
data presented here, equation (12) is accurate to ±1 A at
temperatures between 8 K and 14 K and at ε = 0%, where it is
possible to measureBC2 directly. At 4.2 K and 6 K the accuracy
is reduced to ±4 A. For the Kramer parameterization given by

Table 8. The exponent of the flux pinning scaling law n, prefactor
G(ε) and TC as a function of strain when BC2 is constrained at 5%ρN

and using a Kramer analysis for the Nb3Al strand.

G(ε)

Strain, ε(%) n (1013 J2 K−2 m−7) TC (K)

BC2 defined at 5%ρN

−1.79 2.77 0.888 13.40
−1.47 2.67 1.14 13.84
−1.17 2.59 1.47 14.30
−0.89 2.57 1.63 14.67
−0.67 2.62 1.41 15.05
−0.45 2.60 1.45 15.31
−0.22 2.56 1.59 15.50
−0.11 2.58 1.52 15.59

0 2.58 1.51 15.63
0.11 2.58 1.51 15.64
0.22 2.57 1.59 15.61
0.33 2.60 1.47 15.59
0.45 2.55 1.65 15.50
0.56 2.57 1.56 15.43
0.67 2.60 1.41 15.35

BC2 defined from Kramer analysis

−1.79 2.78 0.728 13.44
−1.47 2.60 1.13 13.83
−1.17 2.52 1.41 14.25
−0.89 2.81 0.708 14.82
−0.67 2.61 1.18 15.06
−0.45 2.56 1.38 15.29
−0.22 2.48 1.70 15.42
−0.11 2.48 2.15 15.49

0 2.47 2.19 15.51
0.11 2.47 2.22 15.52
0.22 2.47 2.25 15.51
0.33 2.47 2.18 15.48
0.45 2.46 2.27 15.41
0.56 2.45 2.20 15.36
0.67 2.44 2.26 15.24

equation (13), accuracy is further reduced to ±5 A at ε = 0%
for the range 6 K � T � 14 K. At 4.2 K the parameterization
is less accurate probably because of the extrapolated BC2 data
used and the commensurate uncertainty in κ data as can be
seen in figure 28.

Figure 30 presents the RMS ICB error surface for all of the
data in the temperature range 8 K � T � 14 K as a function of
p and q when BC2 is constrained at 5%ρN. The values of p and
q used in the empirical fit are close to the minimum in the error
surface as expected and show a larger uncertainty in p than q.
The surface also shows that p = 0.5 and q = 2 (i.e. Kramer
values) and p = 1, q = 2.5 can be considered for parameterizing
data with less accuracy. In assuming half-integral values of
p and q, comparison can be made with theoretical models
[62]. In a different study, a limited set obtained at very high
currents up to 2000 A as a function of field and temperature
at zero strain have been obtained on the Nb3Al strand [60].
The half-integral and optimum values of p and q suggested by
figure 30 have been tested by plotting modified Kramer plots

of the form J
1
q

E B
1−p
q as a function of applied field which

should yield approximate straight lines. Figure 31 shows
these modified Kramer plots for (a) p = 0.39 and q = 2.16,
(b) p = 0.5 and q = 2 and (c) p = 1 and q = 2.5. The modified
Kramer plot for the optimized fit where p = 0.39 and q = 2.16
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Figure 30. RMS ICB error surface plot as a function of p and q for
all data in the temperature range 8 K � T � 14 K for the Nb3Al
strand. The upper critical field in the fitting procedure was
constrained at 5%ρN. The contours on the error surface plot are
logarithmically spaced per decade as indicated on the legend.

and BC2 is constrained at 5%ρN results in straight lines
for all temperatures and all but the largest critical currents
(IC � 1200 A). A reasonable description is also found using
the Kramer description where p = 0.5 and q = 2, although this
is not as good as the optimized fit. However, for p = 1 and q =
2.5, there is a more noticeable curvature especially at high
temperatures and high currents in the modified Kramer plot
suggesting that these values are not acceptable for describing
the data. In summary, the scaling behaviour of the limited
data set up to high currents is consistent with the scaling of the
comprehensive variable-strain variable-temperature presented
in this work. Given a single scaling law, the fractional values
of p and q provide the best fit to the data (equation (7)).
Although the half-integral Kramer values provide a less-
good parameterization it allows simple comparison with
other measurements in the literature on Nb3Al where it
has been assumed that the Kramer functional form holds
[29, 30, 38, 39].

6. Discussion

There is an ongoing discussion about whether there is
a significant strain gradient across the wire cross-section
during compressive measurements using short bending springs
[78, 79]. The resistivity measurements of upper critical field
to ε = −1.79% (cf figures 11, 15 and 16) show positive
and negative curvatures in compression, independently of the
criterion used to define TC and BC2 such that they cannot
be described by an empirical power-law expression [16]. In
general, the strain tolerance of BC2 is tensorial and dependent
on the strain tolerance of the density of states, which is complex
[36, 64, 80]. Nevertheless, we suggest that there are three
aspects to the data that suggest that strain non-uniformity in
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Figure 31. Modified Kramer plots, J
( 1
q )

E B
(

1−p
q ), as a function of

magnetic field and temperature at ε = 0% for (a) p = 0.39 and q =
2.16, (b) p = 0.5 and q = 2 and (c) p = 1 and q = 2.5 for the Nb3Al
strand [59].

the sample is not significant and that the data are representative
of the strain values quoted: the resistive transition width for
these data (see figure 10) was independent of strain for −1% �
ε � 0.67%, and only increased slightly at higher strains when
the spring was being plastically deformed to −1.79% from
1.0 T to ∼1.1 T. The data obtained on all samples to date are
consistent with free-standing axial tension measurements (see
figure 12). Finally, the parameterization given by equation (7)
holds throughout the entire strain–temperature phase space
until BC2 is below about 2 T. Although it was not possible
to check the reversibility of the strand after it was cycled to
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−1.79%, these aspects of the data also suggest that the sample
was not damaged during the entire experiment.

Previous measurements at zero strain on a powder-route
Nb3Al wire [63] have been parameterized by assuming p and
q are the Kramer values and treating TC(ε) and BC2(T , ε) as
fitting parameters. This gave ν = 1.5. Measurements at
zero strain on a high temperature reacted jelly-roll Nb3Al
wire [31], where BC2 was defined at B50%ρN

C2 (0, ε), gave
values of p = 0.52, q = 2.7, n = 3.73 and ν = 1.4.
Measurements of JE as a function of strain and temperature
on a bronze route Nb3Sn conductor [8] made in high fields
until JE = 0 (i.e. JE is parameterized into the tail of the
JE(B) characteristic) gave p = 0.5, q = 3.5, n = 3.1
and ν = 1.5. These sets of values are consistent with
the higher values for ν found for the technological fit in
table 1 compared to those derived from direct resistivity
measurements in table 5 and subsequent parameterization
(equations (7), (12) and (13)) where BC2(T , ε) is defined
near the onset of zero resistance from the resistivity data.
Indeed, we note a general trend, consistent with table 5,
that ν increases as the resistive criterion for BC2 increases
either when measured directly or indirectly imposed through
the parameterization. Equation (2) can be differentiated to
give [8]

BC2(0, ε) = −1

ν
TC(ε)

∂BC2(T , ε)

∂T

∣∣∣∣
TC

. (14)

The experimental results presented here give 1/ν ≈ 0.8 which
is similar to the simple metal value of 0.69 [81] and consistent
with the work which includes the effects of paramagnetic
limiting and spin–orbit coupling [82, 83].

For idealized materials with a sharp distribution in BC2,
making measurements in sufficiently high magnetic fields until
JE is zero (i.e. in the tail up to BC2) would be the natural
way to identify BC2 and the scaling law. However, for the
inhomogeneous Nb3Al in this work, such an approach leads to
values for BC2(T , ε) close to those at 95%ρN. This paper has
demonstrated that scaling breaks down and p and q are strong
functions of temperature (and strain) when the upper critical
field is defined atB50%ρN

C2 andB95%ρN
C2 (see figures 19(b), (c) and

20(b), (c)). Necessarily if one assumes that scaling operates
and hence that p and q are constants, a parameterization that
includes the tail of JE can only be an averaged value of this
strong temperature dependence. Furthermore, if there is a
broad distribution in BC2, and JE is parameterized in the tail,
this tends to increase the value of q [84]. In summary, if the
JE data are parameterized in the tail of the distribution, the
advantage of accurate parameterization at the highest fields
must be offset against the correlations between the fitting
parameters (see figure 18) causing p, q and ν to be increased
and the break-down of accurate scaling.

The issue of how to identify a characteristic or average
value for BC2 of the bulk of the Nb3Al is a primary problem
in accurately identifying the constants p and q in the Fietz–
Webb scaling law. The approach of Kroeger et al has been
adopted to find BC2 from resistivity measurements. Resistive
measurements at high currents essentially map out more of
the JE surface. However, at sufficiently low currents, we have
found that the shape of the resistivity transition is reasonably
independent of sample current and so associates the width

in the resistivity transition with the distribution in the upper
critical field. In the limit that the width is independent of
current one can also assume there are no flux creep effects
[85, 86]. To a first approximation, one can rather simplistically
interpret the onset of resistance

(≈B5%ρN
C2 (T , ε)

)
as an evidence

for no percolative superconducting path. Theoretical work
on percolative networks shows that in a two-dimensional
system this occurs when about 40% of the material is normal
[87, 88]. In three dimensions, 70–75% must be normal
for there to be no percolative superconducting path and
the resistive transition begins [88, 89]. Although these
theoretical percentage values are dependent on how the
connectivity of network is constructed, experimental support
for these results has been observed in superconducting systems
[90, 91]. Further information about compositional variations
in Nb and Al both along and across the filament, the properties
of the grain boundaries and the properties of the resistive
state will be required to be more quantitative. Despite these
uncertainties, given the good scaling we suggest B5%ρN

C2 (T , ε)

is the relevant characteristic upper critical field in the scaling
law at which a sizeable fraction of the Nb3Al material is in
both the superconducting and normal states.

From an engineering perspective where the most accurate
description of JE is required for all possible B–T–ε conditions,
the technological fit provided is appropriate. For much
of the temperature–strain phase space, this can be closely
approximated by the empirical law (equation (7)) that self-
consistently describes variable-temperature and variable-strain
data as was found for Nb3Sn [8]. Kroeger et al found
very different results on their high bronze–niobium ratio
monofilament to those reported here. The strain at which the
peak in JE and BC2 occurred differed by about 0.3%; the index
n varied by about 25% and the prefactor A(ε) varied by about
a factor 3. In comparison, for the Nb3Al reported here (and the
Nb3Sn multifilamentary conductor reported previously [8])—
the peak in JE and BC2 occurred at about the same strain, the
variation in n as a function of strain is a few per cent and A(ε)
changes by ∼10% in the equivalent strain range. Further work
would be required to determine to what degree these marked
differences are due to the different materials investigated
and/or due to the different sample current limits in which
the resistivity data have been measured from which BC2 has
then been extracted. If one assumes that a single mechanism
determines JE over the range of B–T–εmeasured, then p = 0.39
and q = 2.16 provide the most accurate scaling. A Kramer
analysis has also been completed where it is assumed that p =
0.5 and q = 2, which is less accurate but can be more easily
compared to other results in the literature and theoretical work.

Experimental values of n for low-temperature type-II
superconductors such as NbTi [75], V3Ga [92], Nb3Al [30],
Nb3Sn [35] and PbMo6S8 [66, 67, 93] are in the range 2 �
n � 3. Hence, the values of n obtained from constraining
BC2 at 5%ρN are consistent with both the theoretical [62] and
experimental values in the literature. Equally, variable-strain
measurements at 4.2 K on low-temperature superconductors
gave m = 1, 1.2, 1.4, 1.6 and 4 for Nb3Sn, Nb3Sn with Hf and
Ga additions, V3Ga, Nb3Ge and NbTi, respectively [94, 95].
There is a general trend that m increases as the sensitivity to
strain of the normalized upper critical field decreases. This
correlation is consistent with the increase in m from 0.86 to
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2.14 for a Nb3Sn conductor produced by an extra hot isostatic
pressing reaction which also reduced the strain sensitivity of
normalized BC2 [37] and the high value of m observed here for
the Nb3Al strand.

A complete description of the scaling law requires
accurate knowledge of the prefactor C(T , ε) in equation (1).
Although the temperature and strain dependence of
C has been measured and parameterized in terms of
A(ε)

[
B

5%ρN
C2 (T , ε)

]2.18
(see equation (7)), all the work in the

literature shows that the GL parameter must be included in
any proper description of scaling. Since κ is not directly
measured in transport measurements, we have used a GL
relation to find a characteristic κ from the characteristic values
of BC2 that were directly measured. The functional forms
proposed (equations (12) and (13)) accurately describe both
the magnitude and temperature dependence of JE data at all
strains as shown in figure 29 and are consistent with the
zero-strain variable-temperature JE data on (NbTa)3Sn [35].
The strain dependence is not explicitly confirmed because it is
not possible from transport measurements alone to determine
the strain dependence of κ . Nevertheless, agreement between
the functional form and data is consistent with a reasonable
strain dependence for the Sommerfeld constant (from which
the strain dependence of κ can be calculated—equation (8)).
The denominator in FP given by equations (12) and (13) has a
κ2 term. If it is replaced by κ , one can only obtain agreement
if the Sommerfeld constant, γ (ε), increases as TC decreases
which is unphysical. If it is replaced by κ3 (or higher powers),
one has to postulate an unreasonably strong strain dependence
for γ (ε) so that an exponent value for κ of 2 is required. In
this context, the difference between n and m in the prefactors
for the scaling law (equations (3) and (4)) is attributed to the
temperature and strain dependence of kappa. In the Kramer
analysis which assumes that p = 0.5 and q = 2, the exponent
of BC2 is close to 5/2 as observed in variable-temperature data
on (NbTa)3Sn at zero strain [35].

An important feature of the functional form is that the
primary multiplicative constant (i.e. 1/337 and 1/249 in
equations (12) and (13) respectively) is dimensionless. It
should be noted that ∼80% of the non-Cu cross-sectional
area of the strand becomes Nb3Al. Therefore, the fraction
of the entire cross-sectional area that is Nb3Al is ∼46%;
so these multiplicative constants should be approximately
doubled when considering the pinning in the superconducting
layer alone. Simple dimensionality considerations imply that
there is no requirement to add, for example, a constant grain
size factor to the functional form. It is well established that
in low fields, JE is approximately inversely proportional to the
grain size [96]. Nevertheless, Kramer pointed out in the 1970s
that the high-field functional form of many superconductors
approaches a limiting value that is well below (typically a
few per cent [74] of) the depairing current [97, 98]. For
example, comparison between Nb3Sn material [99], or the
Chevrel phase SnMo6S8 [100], with different grain sizes shows
a clear saturation at the highest fields. There is no consensus
explanation for saturation [74, 97, 98]. However, we conclude
that in high fields, the parameterization that includes κ is
most relevant for a comparison with theoretical work on the
mechanism that determines JE, and that the functional form of
FP suggests that JE is not dependent on grain-size, consistent

Figure 32. The four-dimensional critical current surface as a
function of magnetic field, temperature and strain for the Nb3Al
strand.

with JE-microstructure correlations in other A15 and Chevrel
phase superconducting materials.

7. Summary and conclusions

Detailed, accurate measurements of engineering critical
current density and upper critical field have been made on a
technological Nb3Al conductor in magnetic fields up to 15 T,
temperatures from 4.2 K up to the critical temperature and in
the strain range from −1.79% to 0.67% as shown in figure 32.
Improvements to the design of the probe have meant that the
errors in the JE measurements for temperatures above 4.2 K
were equivalent to an uncertainty of ± 100 mK with a
stability during the measurements of <5 mK. The limiting
current at 4.2 K was 200 A and from 6 to 14 K was 80 A.
The typical noise level on these measurements has been
reduced to ±1 μV m−1 allowing JE to be defined at
10 μV m−1. These improvements have also allowed reliable
measurements of the index of transition, N, throughout the
temperature range. JE was confirmed to be reversible at least
over the strain range −0.23% < ε < 0.67%. Complementary
resistivity measurements were taken to determine the upper
critical field (BC2(T , ε)) and the critical temperature (TC(ε))
directly. At low currents the shape of the resistivity curve is
only weakly dependent on the sample current. In this regime,
when BC2(T , ε) is defined at 5%ρN, 50%ρN or 95%ρN, an
empirical relation is found where

B
ρN
C2 (T , ε) = B

ρN
C2 (0, ε)

[
1 −

(
T

T
ρN

C (ε)

)ν]
(15)

and an approximate relation BρNC2 (0, ε) = 3.60 × T
ρN

C (ε) −
29.86 holds. The JE data have been parameterized using
the volume pinning force (FP) where: FP = JE × B =
A(ε)BnC2(T , ε)b

p(1 − b)q where b = B/BC2(T, ε). To achieve
an accuracy of ∼1 A,BC2(T , ε)was described by the empirical
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relation and three different ranges of temperature–strain were
considered. The constants p, q, n and ν and the strain-
dependent variables A(ε), BC2(0, ε) and TC(ε) have been
treated as free parameters and determined in each range.

When BC2(T , ε) is constrained to be the value at 50%ρN

or 95%ρN, the scaling law for FP breaks down such that p and
q are strong functions of temperature and q is also a strong
function of strain. However, when BC2(T , ε) is defined at
5%ρN, there is good scaling where p and q are constants—
independent of temperature and strain. If low JE values in
the high-field tail of the JE–B relations are ignored, ν = 1.25,
n = 2.18, p = 0.39 and q = 2.16. Good scaling implies
thatB5%ρN

C2 (T , ε) provides the characteristic (or average) upper
critical field of the bulk material although JE is non-zero above
B

5%ρN
C2 (T , ε) and the current flow is percolative.

FP can also be approximated by a form that explicitly
includes the Ginzburg–Landau parameter, κ , given by

FP = 1

337

[
B

5%ρN
C2 (T , ε)

]2.60

(2π�0)
1
2μ0κ2(T , ε)

b0.39(1 − b)2.16 (12)

or a Kramer-like form

FP = 1

249

[BC2(T , ε)]
5
2

(2π�0)
1
2μ0κ2(T , ε)

b
1
2 (1 − b)2, (13)

where

κ(T , ε) = BC2(T , ε)√
2BC(T , ε)

= 924
BC2(T , ε)

γ
1
2 (ε)TC(ε)[1 − t2]

, (8)

γ is the Sommerfeld constant and t = T /TC(ε). Since JE is
described using a scaling law that incorporates fundamental
constants alone, it suggests that in high fields JE is not
dependent on grain-size, consistent with JE-microstructure
correlations in other superconducting materials.
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