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Abstract. A critical-state model has been used to calculate the magnetic response of a
superconducting sample to an applied a.c. magnetic field. The analysis has been performed
for both a cylindrical and a slab geometry and evaluated up to the tenth harmonic. It is shown
that standard expressions derived using the critical-state model which relate the critical current
density to the d.c. magnetic moment can be used in a.c. measurements to within an accuracy of
∼4% by replacing the term for the d.c. magnetic moment by

√
2mrms(min), wheremrms(min)

is the minimum lossless rms magnetic moment; the apparent penetration of the field beyond the
centre of the sample (i.e. an overshoot) found in flux penetration measurements is an artifact of
the analysis and cannot be used as direct evidence for granularity. Flux penetration measurements
on non-granular NbTi from 4.2 K up toTc in magnetic fields up to 10 T are presented which
provide good agreement with calculations.

1. Introduction

Flux penetration measurements, developed by Campbell [1], provide a unique opportunity
to study both the functional form and spatial variation of the critical current density (Jc) of
superconductors, non-destructively. Such information has become increasingly important
with the discovery of the high-temperature superconductors, where uniformJc in such short-
coherence-length materials is difficult to achieve. Flux penetration measurements make it
possible to quantify the inhomogeneous properties of superconducting materials and locate
regions of interest.

A number of authors have considered the low-field response of superconductors either
for a.c. susceptibility measurements or flux penetration measurements [2–4]. They have
shown that a strong field dependence forJc (which can occur in strongly granular materials
or materials with very weak pinning) can explain the non-physical results found in flux
penetration measurements, namely that over a small range of a.c. magnetic fields, flux
apparently penetrates beyond the centre of the sample (i.e. an overshoot occurs). However
this effect has also been observed in high d.c. magnetic fields, where a strongly field-
dependentJc cannot explain the overshoot. This work shows that an overshoot inevitably
follows from a uniform field-independentJc. Results for a NbTi alloy which is considered
to be a non-granular are presented, and good agreement with the analysis confirmed.

In section 2, the response of a superconducting sample to low-frequency, a.c. fields
is calculated. Following Bean’s work [5] the solution is given for low a.c. fields, i.e. for
fields less than those required to fully penetrate the sample. The section also contains the
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solutions for large a.c. fields, i.e. for fields greater than those required to fully penetrate the
sample. A Fourier analysis is then used to generate the harmonic response of both the loss
and lossless components for the first ten harmonics, i.e. from 1F to 10F . Solutions are
given for both a cylindrical and a slab geometry. Results are plotted graphically and values
useful for analysing experimental data tabulated. Section 3 describes the NbTi sample
measured and highlights experimental details. The sample is made from a commercial,
multifilamentary, superconducting wire. It has been chosen because it is one of the most
extensively characterized superconducting materials and can be assumed to be non-granular.
Results are presented from 4.2 K up toTc in magnetic fields up to 10 T. The analysis of the
experimental data is shown in section 4. The results have been used to determine magnetic
field profiles and the critical current density as a function of field and temperature. The
magnetically measuredJc(B, T ) values are compared with transport current data on the same
sample. Section 5 describes the harmonic response of the sample up to the tenth harmonic,
10F . The results are compared with the theoretical predictions outlined in section 2. At
the end of the paper, the most important findings are summarized.

Figure 1. Possible magnetic field profiles inside a superconducting sample as a result of a low
a.c. field (a, b, c—field decreasing; d, e, f—field increasing).

2. Theory

2.1. Low a.c. fields

First, a.c. fields less than those required to fully penetrate the sample are considered. In
this paper, lower-case letters are used for the a.c. field which in general is smaller than the
additional d.c. field. Figure 1 shows the magnetic field profiles which can arise when an
a.c. field(bA = bm cos(ωt)) is applied parallel to an infinitely long cylinder (axialb) [5].
The magnetic field profiles can be considered in two parts. From a to c, the field decreases
from its maximum value, whenbA = bm at t = 0, until the profile is fully reversed, when
bA = −bm at t = π/ω. From d to f, the field increases from its minimum value until
the original profile is returned to, atbA = +bm and t = 2π/ω. It is possible to write
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expressions for the magnetic field as a function of radius,b(r), where

r0 6 r < x b(r) = ±bm ∓
∣∣∣∣db(r)dr

∣∣∣∣ (rm − r) (1)

x 6 r 6 rm b(r) = +bA ±
∣∣∣∣db(r)dr

∣∣∣∣ (rm − r) (2)

where the upper signs are for 06 t < π/ω and the lower signs forπ/ω 6 t < 2π/ω, rm
is the radius of the sample,rm − r0 is the maximum distance that the field penetrates into
the sample,x is the instantaneous distance at which the gradient in the field profile changes
sign, and|db(r)/dr| is equal toµ0Jc. From figure 1 it can be seen that

x = rm −
(
bm ± bA
2µ0Jc

)
(3)

where the± is for increasing/decreasing field. The total flux,φT , within the sample is
obtained by integrating over the cross-sectional area of the sample:

φT =
∫ rm

0
dφ. (4)

For a cylinder of radiusrm lying parallel to the magnetic field,

φT =
∫ rm

0
2πrb(r) dr. (5)

The general equation for the voltage generated across a coil is given by the rate of change
of the flux:

V (t) = −kLdφ

dt
(6)

wherek is a constant determined by the coil geometry andL is the length of the sample.
In flux penetration measurements, the magnetization of the sample is measured using a set
of two secondary coils, coils 1 and 2, which are of similar geometry and wound in opposite
senses. If the sample is placed in coil 1, the voltage induced across each coil in response
to both sections of the a.c. magnetic field can be calculated. In the coil which contains the
superconducting sample, equations (1)–(6) are used. In the coil without the superconducting
sample, equations (5) and (6) are used where

b(r) = bA.
The voltage across coil 1 (with the superconducting sample) is

V1(t) = kL(πr2
m)bmω

((
bm

bp
− 5b2

m

16b2
p

)
sin(ωt)∓

(
bm

2bp
− b2

m

4b2
p

)
sin(2ωt)

+
(
− b2

m

16b2
p

)
sin(3ωt)

)
where from figure 1, the d.c. field required to fully penetrate the sample isbp (bp = µ0Jcrm)

and∓ is for decreasing/increasing field. The prefactor ensures that subsequent terms are
dimensionless and so can be considered as a differential susceptibility. The voltage across
coil 2 (without the superconducting sample) is

V2(t) = kL(πr2
m)bmω sin(ωt)

for both increasing and decreasing field. The total voltage across both secondary coils is

V (t) = V2(t)− V1(t).
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So the total waveform is

V (t) = Kbmω[c1 sin(ωt)± c2 sin(2ωt)+ c3 sin(3ωt)]

where the upper signs are for 06 t < π/ω and the lower signs are forπ/ω 6 t < 2π/ω,
and

K = kL(πr2
m)

c1 =
(

1− bm
bp
+ 5b2

m

16b2
p

)
c2 =

(
bm

2bp
− b2

m

4b2
p

)
c3 =

(
b2
m

16b2
p

)
bp = µ0Jcrm.

(7)

Repeating the analysis for a slab of thicknessz and a half-widthrm gives

K = kL(2rmz)

c1 =
(

1− bm

2bp

)
c2 =

(
bm

4bp

)
c3 = 0

bp = µ0Jcrm.

(8)

For a cylinder, of radiusrm, with the field applied perpendicular to the long axis (transverse
b), Goldfarbet al [6] find that thec1,2,3 are twice those for an axial field (using methods
outlined by Zenkevitchet al [7]). The factor of two accounts for the demagnetization factor
in this orientation:

K = kL(πr2
m)

c1 =
(

2− 2bm
bp
+ 5b2

m

8b2
p

)
c2 =

(
bm

bp
− b2

m

2b2
p

)
c3 =

(
b2
m

8b2
p

)
bp =

(
2

π

)
µ0Jcrm.

(9)

The total waveform can be expressed as a Fourier series of the form

V (t) = Kbmω
∞∑
n=1

(an cos(nωt)+ bn sin(nωt)) (10)

where the dimensionlessans andbns are given by

an =
(

1

Kbmω

)(
ω

π

)∫ 2π/ω

0
V (t) cos(nωt) dt
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and

bn =
(

1

Kbmω

)(
ω

π

)∫ 2π/ω

0
V (t) sin(nωt) dt.

In the complete solution, theans are

a1 =
(

8

3π

)
c2

and

a3 = −
(

8

5π

)
c2

and all other oddans are

an = −
(

4n

π(n+ 2)(n− 2)

)
c2

where values ofK and c1,2,3 are from equations (7)–(9). All evenans are zero. Theans
represent the loss component of the induced voltage, wherea1 is the magnitude of the
fundamental frequency. Similarly for thebns,

b1 = c1

and

b3 = c3

and all otherbns are zero. Thebns represent the lossless component of the induced voltage,
whereb1 is the magnitude of the fundamental frequency. These results are consistent with
Bean’s results for very small a.c. fields [5]. However, the results above are valid over
a larger field range, i.e. for allbm 6 bp, and can be used for both cylindrical and slab
geometries with appropriate values ofc1,2,3 andbp (equations (7)–(9)).

2.2. High a.c. fields (bm > bp)

The analysis can be extended to a.c. fields greater than those required to fully penetrate
the sample. Figure 2 shows the magnetic field profiles which can arise. From a to c, the
a.c. field decreases from its maximum valuebm at t = 0, until the profile is fully reversed
(at bA = bm−2bp andt = tr ) and from c to e, the a.c. field decreases to its minimum value
−bm while the gradient of the field is constant. From e to g, the a.c. field increases from its
minimum value until the field profile is fully reversed atbA = −bm+2bp andt = π/ω+ tr
and from g to a, the a.c. field increases to its maximum value and the gradient of the field is
constant. As before, it is possible to write expressions for the magnetic field as a function
of the radius, i.e.b(r):

06 r < x b(r) = ±bm ∓
∣∣∣∣db(r)dr

∣∣∣∣ (rm − r)
x 6 r 6 rm b(r) = +bA ±

∣∣∣∣db(r)dr

∣∣∣∣ (rm − r)
where the upper signs are for 06 t < tr and the lower signs forπ/ω 6 t < tr + π/ω, and

06 r 6 rm b(r) = +bA ±
∣∣∣∣db(r)dr

∣∣∣∣ (rm − r)
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Figure 2. Possible magnetic field profiles inside a superconductor for high a.c. fields.bp is
the field required to fully penetrate the sample andtr is the time taken to reverse the a.c. field
(a→ d→ e—field decreasing; e→ h→ a—field increasing).

where the upper signs are fortr 6 t < π/ω and the lower signs fortr + π/ω 6 t < 2π/ω
and tr is the time taken to fully reverse the a.c. field:

tr = 1

ω
cos−1

[
1−

(
2µ0Jcrm

bm

)]
.

The induced voltage is

V (t) = Kbmω[c1 sin(ωt)± c2 sin(2ωt)+ c3 sin(3ωt)]

where thec1,2,3 are given by equations (7)–(9) and the upper signs are for 06 t < tr and
the lower signs forπ/ω 6 t < tr + π/ω andV (t) = 0 for all othert 6 2π/ω.

Figure 3 shows the induced voltage as a function of time. It is possible to experimentally
record such voltage waveforms using a digital storage scope or computerized signal analysis
techniques [8–12]. This voltage can also be expressed as a Fourier series in the form of
equation (10):

V (t) = Kbmω
∞∑
n=1

(an cos(nωt)+ bn sin(nωt)).

For the complete solution, the oddans are

an =
(

1

π

)[ 3∑
i=1

(
ci

n+ i
)

[1− cos((n+ i)ωtr )] −
∑
j

(
cj

n− j
) [

1− cos((n− j)ωtr)
]]
.

For n = 1, j = 2, 3; for n = 3, j = 1, 2; and forn > 5, j = 1, 2, 3. All of the evenans
are zero. Theans represent the loss component of the induced voltage. Similarly the odd
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Figure 3. The applied a.c. magnetic field and resulting induced voltage shown as a function of
time.

bns are

bn = −
(

1

π

)[ 3∑
i=1

(
ci

n+ i
)

sin((n+ i)ωtr )−
∑
j

(
cj

n− j
)

sin((n− j)ωtr)− ckωtr
]
.

For n = 1, k = 1 andj = 2, 3; for n = 3, k = 0 andj = 1, 2; and forn > 5, k = 0 and
j = 1, 2, 3. All of the evenbns are zero. Thebns represent the lossless component of the
induced voltage.

For the loss component, the harmonic voltages measured at the frequencynF (Vrms(nF ))
by the lock-in amplifier (LIA) are simply the time-averaged rms values ofV (t), i.e.

√
1/2

times the coefficients of cos(nωt), soVrms(nF ) =
√

1/2Kbmωan. The lossless voltage lags
behind the applied field, since sin(ωt) = cos(ωt − π/2). So for the lossless components,
Vrms(nF ) = −

√
1/2Kbmωbn. Figures 4 and 5 show the loss and lossless components of

the induced voltage for a cylindrical sample in an axial field up to the tenth harmonic. The
solutions have been obtained using the mathematical package MATHCAD v6. As before,
the equivalent equations for a slab (axialb) and cylinder (transverseb) can be obtained by
substituting the appropriate values forK, c1,2,3 andbp.

For slab and cylindrical geometries, at the fundamental frequency the loss voltage
increases asbm. For all other odd harmonics, the loss voltage first decreases to a minimum
and then increases monotonically asbm (cf. figure 4). For the higher harmonics (5F–
9F ), oscillations can be seen in the induced voltage. In contrast, the fundamental and
third (3F ) harmonics of the lossless voltage decrease to a negative value and then increase
monotonically to zero asbm. For all other odd harmonics, the lossless voltage oscillates,
then decreases to a negative value before rising to zero asbm (cf. figure 5). Again, for
the higher harmonics (5F–9F ), several oscillations can be seen in the induced voltage.
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Figure 4. The loss component of the induced harmonic voltage for a cylinder (axialb), where
the maximum a.c. field is ten times that required to fully penetrate the sample. Note that all of
the even harmonics are zero.

Figure 5. The lossless component of the induced harmonic voltage for a cylinder (axialb),
where the maximum a.c. field is ten times that required to fully penetrate the sample. Note that
all of the even harmonics are zero.

Oscillations similar to these have been found in a.c. susceptibility measurements [13]. For
each of the geometries considered, the minimum value of the lossless voltage is of similar
magnitude for all odd harmonics.

For a cylinder, the initial gradient (dVrms/dbm) for all odd harmonics of both the loss
and lossless induced voltages is twice as large for transverseb as for axialb, and the
field required to fully penetrate the sample (bp) is a factor of 2/π lower (cf. equations
(7) and (9)). Thus the minimum value of the induced voltage is a factor of 4/π ≈ 1.27
higher for transverseb than for axialb. Table 1 shows the minimum values of the loss and
lossless induced voltage (Vrms(min)) and the fields at which they occur (bm(min)) for both
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Table 1. Values ofVrms (min) andbrms (min) for the loss and lossless induced voltage for both
the cylinder and slab samples (axialb).

Loss Lossless

Vrms (min) bm(min) Vrms (min) bm(min)
Geometry Harmonic ((−1/

√
2)Kbpω) (bp) ((−1/

√
2)Kbpω) (bp)

Cylinder 1F 0.00 0.00 0.32 0.80
(axial b) 3F 0.15 1.35 0.34 4.60

5F 0.16 3.30 0.34 12.39
7F 0.17 6.28 0.34 24.64
9F 0.17 10.25 0.34 39.68

Slab 1F 0.00 0.00 0.5 1.00
(axial b) 3F 0.26 1.75 0.52 6.00

5F 0.28 4.38 0.52 16.22
7F 0.28 8.33 0.52 31.57
9F 0.30 13.62 0.52 52.04

the cylinder and slab (axialb). From this table, the minimum value of the lossless induced
voltage for the cylinder (axialb) at the fundamental frequency (1F ) is

Vrms(min) = −0.32
√

1
2Kbpω. (11)

Using equation (6), the probe constant (P ) can be written as

P = (µ0kω)
−1 = mrms

Vrms
(12)

whereVrms is the rms voltage produced by the rms magnetic moment (mrms). Rearranging
equations (7), (11) and (12) gives

Jc =
√

2mrms(min)

0.32(πr2
mL)rm

= 3.125

(√
2mrms(min)

V ∗rm

)
(13)

wheremrms(min) is the minimum value of the magnetic moment. This result is about 4%
higher than the standard d.c. result from the critical-state model, namelyJc = 3m/V ∗rm if√

2mrms is substituted for the magnetic moment (m). Similarly for transverseb

Jc = 3.125

(
π

4

)(√
2mrms(min)

V ∗rm

)
. (14)

Using the data in table 1 for the infinite slab,

Jc =
√

2mrms(min)

0.5(2Lzrm)rm
= 2
√

2mrms(min)

V ∗rm
(15)

which again is the standard d.c. result for the slab geometry if the same substitution with√
2mrms is made. The data in table 1 demonstrate that if the substitution is used for higher

harmonics,Jc is accurate to within 4%. If the substitution is used in the standard relation
for a rectangular slab, it gives

Jc = 2
√

2mrms(min)

V ∗a2(1− a2/3a1)

where 2a1(m) and 2a2(m) (a1 > a2) are the width and the thickness of the samples
respectively.
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2.3. Magnetic field profiles

The standard magnetic field profile analysis can be completed by differentiating the
fundamental harmonic of the lossless voltage with respect to the field,bm.

Figure 6. Magnetic field profiles for a slab and a cylinder.δ for the cylinder has been scaled
to that of the slab.

For the cylinder (axialb), with bm < bp,

Vrms(1F) = −
√

1
2Kbmωc1.

Substituting in forc1 gives

Vrms(1F) = −
√

1
2Kbmω

[
1− bm

bp
+ 5b2

m

16b2
p

]
and differentiating with respect to the a.c. field,bm,

dVrms(1F)

dbm
= −

√
1
2Kω

[
1− 2bm

bp
+ 15b2

m

16b2
p

]
. (16)

This can be rewritten as

|dVrms(1F)/dbm|
|dVrms(1F)/dbm|MAX

= 1− 2

(
δ

rm

)
+ 15

16

(
δ

rm

)2

(17)

where the depth that the field penetrates (δ) is

δ = rm
(
bm

bp

)
.

Solving this quadratic inδ, and taking only the physically meaningful solution, gives

δ

rm
= 16

15

[
1−

(
1− 15

16

(
1− |dVrms(1F)/dbm|
|dVrms(1F)/dbm|MAX

))1/2
]
.

For small a.c. fields, i.e.bm � bp,

δ = rm

2

(
1− |dVrms(1F)/dbm|
|dVrms(1F)/dbm|MAX

)
(18)
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where, from equation (7),

rm =
( √

2

kLπω

∣∣∣∣dVrms(1F)dbm

∣∣∣∣
MAX

)1/2

.

For a cylindrical sample (transverseb), equation (18) remains valid, and from equation (8),

rm =
(

1√
2kLπω

∣∣∣∣dVrms(1F)dbm

∣∣∣∣
MAX

)1/2

(19)

but δ has no simple physical interpretation. Repeating the analysis for the slab gives

δ = rm
(

1− |dVrms(1F)/dbm|
|dVrms(1F)/dbm|MAX

)
(20)

where, from equation (8),

rm = 1

2kLzω

∣∣∣∣dVrms(1F)dbm

∣∣∣∣
MAX

.

This analysis can be extended to find the spatial variation ofJc(δ). For the cylinder (axial
b), at low a.c. fields, rearranging equations (7), (12) and (16) gives

Jc(δ) =
∣∣∣∣∣
√

2 dmrms(δ)

(πr2
m)L dδ

∣∣∣∣∣ = 1

V ∗

√
2 dmrms(δ)

dδ

where dmrms(δ)/dδ is the differential ofmrms(δ) with respect toδ. The result is again
similar to the standard d.c. resultJc = dM(δ)/d(δ) as long as

√
2mrms is substituted for the

magnetic moment. In Campbell’s original magnetic field profile analysis, where the total
flux is measured, the penetration depth is calculated from dV/db (cf. equations (18) and
(20)) and the field inside the sample fromb. This analysis provides directly the magnetic
field profile of the sample. Figure 6 gives the calculated results of a magnetic field profile
analysis for a slab and a cylinder (axialb), from an analysis at the fundamental frequency.
The x-axis (penetration depth,δ) for both geometries is calculated using equation (17)
and they-axis (magnetic field,µ0M) is simply bm. This analysis avoids incorporating
non-linear terms and provides a value forδ accurate to a factor of 2. The graph shows
the essential features characteristic of a homogeneous sample: the maximum value of the
penetration depthδ is approximately equal to the macroscopic dimension of the sample; the
gradient in the magnetic field is approximately constant throughout the sample and a region
of overshoot in the magnetic field profile is expected. In the original work by Campbell,
the total voltage signal was considered and no overshoot found [1].

The magnetic field profile of a granular superconductor can be generated by considering
the superposition of two profiles produced by an intra- and intergranularJc. Figure 7 shows
such a magnetic field profile where the characteristic dimension of the grains is a third of
that of the sample, but theirJc is a factor of ten higher. Forδ < rm, the figure shows
two gradients in the magnetic field, i.e. two values for dM/dδ, consistent with two distinct
values ofJc. This is a simplified description of a granular system since in practice the outer
grains will effectively screen the inner grains. Equally, the two gradients shown in figure
7 cannot be associated with any specific spatial variation inJc [4]. Nevertheless, figures 6
and 7 show that information can still be obtained about the variation ofJc. In our analysis
of a homogeneous sample with a singleJc, a peak is seen at the fundamental frequency of
the lossless component of the induced voltage which results in an overshoot in the magnetic
field profile. The presence of two distinct gradients and not the overshoot provides evidence
for granularity.



4448 H D Ramsbottom and D P Hampshire

Figure 7. The magnetic field profile for a granular superconductor. The two gradients are a
result of the sample having both an inter- and intragranularJc.

3. Experimental details

3.1. Sample preparation

The sample consisted of a commercial, multifilamentary, superconducting NbTi wire of 61
filaments, each 28µm in diameter. The copper matrix was removed using nitric acid and
the NbTi filaments stuck together with G.E. varnish. 60 sections were cut, each 3 mm long
and formed into a sample.

3.2. Experimental procedure

Flux penetration measurements were made from 4.2 K up toTc in magnetic fields up to 10 T
[14, 15]. Measurements are made by applying an increasing a.c. field to a superconducting
sample. In agreement with Lenz’s law, currents flow to oppose the penetration of the field.
Bean’s critical-state model shows that the lossless supercurrents flow to a depthδ and are
equal toJc. At intermediate applied a.c. fields, the sample is fully penetrated, i.e. the depth
to which the field penetrates (δ) is equal to the radius of the sample (rm). At this point, a
current density equal toJc flows throughout the entire sample. Eventually high a.c. fields
are applied, above those necessary to fully penetrate the sample.

The primary solenoid in these measurements is a two-component oppositely wound
a.c. superconducting coil which generates sufficient a.c. field to fully penetrate the sample
without quenching the d.c. superconducting magnet [14]. A set of oppositely wound
secondary coils were used to measure the magnetization of the sample. At each field,
both the loss and lossless components of the induced voltage were recorded for the first ten
harmonics with the NbTi filaments perpendicular (transverseb) to the a.c. and d.c. field.

3.3. Experimental results

Figure 8 shows the magnetic moment versus a.c. field as a function of temperature for
the NbTi sample in a transverse field of 3 T. In this figure, the signal (i.e. the voltage
across the secondary coils) has been converted into a magnetic moment using the probe’s
calibration constant.P was found by calibrating the secondary coils using a Pb sample in
the Meissner state. At an operating frequency of 19.7 Hz,P = 0.277 A m2 V−1. The rms
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Figure 8. The magnetic moment versus the a.c. field for the NbTi sample as a function of
temperature in a transverse field of 3 T.

a.c. current has been converted to a rms a.c. field using the coil constant (C = 28.7 mT A−1)
which was found using a Hall probe. A background signal, taken whenT > Tc, has been
subtracted from the data. At all temperatures there is a sharp fall in the magnetic moment
to a minimum value when there is full penetration of the sample. The marked increase in
magnetic moment at the lowest temperatures and highest a.c. fields is attributed to eddy
current heating in the copper components of the probe. Other similar measurements on
Chevrel phase superconductors confirm the generality of these results [16].

4. Analysis of the results

4.1. Magnetic field profiles

Using the data in figure 8, it is possible to determine magnetic field profiles inside the NbTi
sample in terms ofP andC. The magnetic field inside the sample (µ0M) is

µ0M = bm = CIpk
whereIpk is the peak value of the current in the primary coil during a cycle. The penetration
depth is approximated by

δ = rm
(

1− |dVrms(1F)/dIrms |
|dVrms(1F)/dIrms |MAX

)
where the appropriate value forrm is found using equations (18), (19) or (20). For the
cylinder (transverseb) considered here,

rm =
(

1√
2kLπω

∣∣∣∣dVrms(1F)dbm

∣∣∣∣
MAX

)1/2

=
(
µ0

2π

P

nLC

∣∣∣∣dVrms(1F)dIrms

∣∣∣∣
MAX

)1/2

where n is the number of filaments (i.e. 3660= 60× 61) and dVrms(1F)/dIrms is the
differential of the signal voltage across the secondary coils with respect to the current in
the primary coil. Figure 9 shows the spatial variation in the magnetic field (µ0M) as a
function of temperature for the sample. The gradient of the lines (dM/dδ) as a function of
penetration depth gives the spatial variation ofJc.
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Figure 9. The magnetic field profile inside the NbTi sample as a function of temperature in a
transverse field of 3 T.

Only in the case of the axial field orientation canδ be strictly equated to the depth
to which the field penetrates, or the magnetization considered as the difference between
the applied field and the internal field [17, 18]. However in other geometries, such as
the transverse orientation measured here, these quantities can usefully be described by
this physical interpretation. In addition, the magnetic measurements ofJc can be directly
compared with complementary transport measurements when the sample is in the transverse
orientation since there is equivalent current flow in the filaments for both measurements.

It can be seen that the gradient of the lines in figure 9 and henceJc is approximately
constant throughout the sample. This is expected as surface pinning is not a significant
mechanism in this wire. The minimum in the magnetic moment (in figure 8) corresponds to
an apparent penetration of the magnetic field to a depth greater than the radius of the sample
(in figure 9). The fact that this is a artifact of the analysis has been shown in section 2 and
is expected even for a bulk pinning superconductor such as NbTi.

Figure 10. The critical current density of NbTi as a function of field and temperature.
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4.2. Critical current density

From the minimum value of the magnetic moment, the coil geometry and the dimensions
of the sample, it is possible to calculate the average critical current density at each field
and temperature (using equation (14)). This is shown in figure 10. The values ofJc are
accurate to about 10%, primarily due to uncertainties in the sample dimensions.

At 6 T and 6 K, Jc is 6.2× 108 A m−2 which is in good agreement with transport
current measurements on the same wire that give a value of 6.0× 108 A m−2 [19]. These
values ofJc are typical for commercial NbTi wires, although higher values ofJc have been
obtained in multifilamentary NbTi by introducing artificial pinning centres to giveJc-values
of greater than 1× 1010 A m−2 at 1 T and 4.2 K [20–22].

Figure 11. The harmonic response of the loss component of the induced voltage for NbTi at
6 K in a transverse field of 3 T.

Figure 12. The harmonic response of the lossless component of the induced voltage for NbTi
at 6 K in atransverse field of 3 T.
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5. Harmonic analysis

Figures 11 and 12 show the harmonic response of both the loss and lossless components
of the magnetic moment of NbTi in a transverse field. A background signal, taken when
T > Tc, has been subtracted from all data. During the experiment a line filter was used
to reduce noise and improve the quality of the data. The third (3F ) harmonic of 19.7 Hz
lies close to the line frequency (60 Hz in the USA). The filter both attenuates the signal by
a factor of 0.65 and introduces a phase shift of 20◦. The 3F data have been adjusted to
compensate for the filter.

The results are in good agreement with the theoretical predictions in section 2 (cf. figures
4 and 5). All of the even harmonics are zero, i.e. less than±10µV, and the odd harmonics
are of the correct sign and functional form. For the loss components (figure 11), there is a
factor of 2 in the field at which there is a minimum in the magnetic moment (bmin) between
3F and 5F while the magnitude of the minimum voltages (Vmin) are similar (consistent
with figure 4). For the lossless components (cf. figure 12), there is a factor of 4 inbmin
between 3F and 5F and again the magnitudes of these minimum voltages (Vmin) are similar
(consistent with figure 5).

6. Conclusion

A critical-state model has been used to calculate the magnitude and the functional form of
the magnetic response of a superconducting sample in an applied a.c. magnetic field. The
analysis has been performed for both a cylinder and a slab geometry and evaluated up to
the tenth harmonic.

In flux penetration measurements the lossless component of the induced voltage is
recorded at the fundamental frequency. Initially, there is a sharp fall in this voltage to a
minimum value. Then, the voltage slowly increases as the a.c. field increases beyond that
required for full penetration. This result does not depend on the microstructural properties of
the sample. This explains that the presence of an overshoot in the magnetic field profile is an
artifact of the analysis and cannot be used as direct evidence for granularity. Experimental
confirmation of the overshoot in non-granular superconducting materials has been provided.

It is shown that standard expressions derived using the critical-state model relating the
current densityJc to the d.c. magnetic moment can be used in a.c. measurements to within
an accuracy of 4% by replacing the term for the d.c. magnetic moment by

√
2mrms(min),

wheremrms(min) is the minimum lossless rms magnetic moment.
Flux penetration measurements have been made on commercial, multifilamentary NbTi,

a high-Jc superconductor which exhibits strong bulk pinning. The results have been used to
calculate the functional form and spatial variation ofJc as a function of field and temperature.
The values ofJc(B, T ) are very similar to transport current measurements on the same
sample.

The experimental magnetic field profiles and harmonic response of NbTi are consistent
with the theoretical analysis for a bulk pinning, homogeneous superconductor.
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[2] Gömöry F, Taḱacs S, Lobotka P, Fröhlich K and Plech́acek V 1989PhysicaC 160 1
[3] Campbell A M and Blunt F J 1990PhysicaC 172 253
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