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Abstract. A critical-state model has been used to calculate the magnetic response of a
superconducting sample to an applied a.c. magnetic field. The analysis has been performed
for both a cylindrical and a slab geometry and evaluated up to the tenth harmonic. It is shown
that standard expressions derived using the critical-state model which relate the critical current
density to the d.c. magnetic moment can be used in a.c. measurements to within an accuracy of
~4% by replacing the term for the d.c. magnetic moment\/@n,,,,x(min), wheren,,,s (Min)

is the minimum lossless rms magnetic moment; the apparent penetration of the field beyond the
centre of the sample (i.e. an overshoot) found in flux penetration measurements is an artifact of
the analysis and cannot be used as direct evidence for granularity. Flux penetration measurements
on non-granular NbTi from 4.2 K up t@, in magnetic fields up to 10 T are presented which
provide good agreement with calculations.

1. Introduction

Flux penetration measurements, developed by Campbell [1], provide a unique opportunity
to study both the functional form and spatial variation of the critical current densixyo{
superconductors, non-destructively. Such information has become increasingly important
with the discovery of the high-temperature superconductors, where unifoimsuch short-
coherence-length materials is difficult to achieve. Flux penetration measurements make it
possible to quantify the inhomogeneous properties of superconducting materials and locate
regions of interest.

A number of authors have considered the low-field response of superconductors either
for a.c. susceptibility measurements or flux penetration measurements [2—4]. They have
shown that a strong field dependence fpi(which can occur in strongly granular materials
or materials with very weak pinning) can explain the non-physical results found in flux
penetration measurements, namely that over a small range of a.c. magnetic fields, flux
apparently penetrates beyond the centre of the sample (i.e. an overshoot occurs). However
this effect has also been observed in high d.c. magnetic fields, where a strongly field-
dependent/. cannot explain the overshoot. This work shows that an overshoot inevitably
follows from a uniform field-independemt.. Results for a NbTi alloy which is considered
to be a non-granular are presented, and good agreement with the analysis confirmed.

In section 2, the response of a superconducting sample to low-frequency, a.c. fields
is calculated. Following Bean’s work [5] the solution is given for low a.c. fields, i.e. for
fields less than those required to fully penetrate the sample. The section also contains the
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solutions for large a.c. fields, i.e. for fields greater than those required to fully penetrate the
sample. A Fourier analysis is then used to generate the harmonic response of both the loss
and lossless components for the first ten harmonics, i.e. frfmol10F. Solutions are

given for both a cylindrical and a slab geometry. Results are plotted graphically and values
useful for analysing experimental data tabulated. Section 3 describes the NbTi sample
measured and highlights experimental details. The sample is made from a commercial,
multifilamentary, superconducting wire. It has been chosen because it is one of the most
extensively characterized superconducting materials and can be assumed to be non-granular.
Results are presented from 4.2 K upZtoin magnetic fields up to 10 T. The analysis of the
experimental data is shown in section 4. The results have been used to determine magnetic
field profiles and the critical current density as a function of field and temperature. The
magnetically measuredi (B, T) values are compared with transport current data on the same
sample. Section 5 describes the harmonic response of the sample up to the tenth harmonic,
10F. The results are compared with the theoretical predictions outlined in section 2. At
the end of the paper, the most important findings are summarized.
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Figure 1. Possible magnetic field profiles inside a superconducting sample as a result of a low
a.c. field (a, b, c—field decreasing; d, e, f—field increasing).

2. Theory

2.1. Low a.c. fields

First, a.c. fields less than those required to fully penetrate the sample are considered. In
this paper, lower-case letters are used for the a.c. field which in general is smaller than the
additional d.c. field. Figure 1 shows the magnetic field profiles which can arise when an
a.c. field(by = b,, coqwt)) is applied parallel to an infinitely long cylinder (axig) [5].

The magnetic field profiles can be considered in two parts. From a to c, the field decreases
from its maximum value, wheh, = b,, att = 0, until the profile is fully reversed, when

by = —b, att = 7/w. From d to f, the field increases from its minimum value until

the original profile is returned to, dty = +b,, andr = 2r/w. It is possible to write
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expressions for the magnetic field as a function of radigs), where

ro<r<x b(r)zj:bm:':%(rm_r) (1)
x<r <y b(r)=+bAi‘dl;(r) (rm — 1) (2)
r

where the upper signs are forQt < 7 /w and the lower signs fott /o < t < 27 /w, 1,

is the radius of the sample,, — ro is the maximum distance that the field penetrates into
the sampleyx is the instantaneous distance at which the gradient in the field profile changes
sign, and|db(r)/dr| is equal touJ.. From figure 1 it can be seen that

by, £ by
=Im — 3
* " < ZMOJC ) ( )

where the+ is for increasing/decreasing field. The total fluk;, within the sample is
obtained by integrating over the cross-sectional area of the sample:

I'm

¢r = A do. (4)
For a cylinder of radius,, lying parallel to the magnetic field,
or = / 27rb(r) dr. (5)
0

The general equation for the voltage generated across a coil is given by the rate of change
of the flux:

d¢

V(t) = —kL & (6)
wherek is a constant determined by the coil geometry d@ni the length of the sample.
In flux penetration measurements, the magnetization of the sample is measured using a set
of two secondary coils, coils 1 and 2, which are of similar geometry and wound in opposite
senses. If the sample is placed in coil 1, the voltage induced across each coil in response
to both sections of the a.c. magnetic field can be calculated. In the coil which contains the
superconducting sample, equations (1)—(6) are used. In the coil without the superconducting
sample, equations (5) and (6) are used where

b(}”) = bA.
The voltage across coil 1 (with the superconducting sample) is

Vi(t) = kL(r2)b bu _ 5by, sin(wt) bu_ by sin(2wt)
= wry Yool | — — w - — > w
: " b, 16h2 T2, " w2

b2
+ <_1TZ§) Sin(3a)t)>
where from figure 1, the d.c. field required to fully penetrate the sample @, = woJerm)
and  is for decreasing/increasing field. The prefactor ensures that subsequent terms are

dimensionless and so can be considered as a differential susceptibility. The voltage across
coil 2 (without the superconducting sample) is
Va(t) = kL(r2)b,w Sin(wt)

for both increasing and decreasing field. The total voltage across both secondary coils is
V() = Va(t) — Va(r).



4440 H D Ramsbottom ahD P Hampshire

So the total waveform is
V(t) = Kb,w[c1Sin(wt) +£ ¢3 SIN(2wt) + ¢3 SiN(3wt)]

where the upper signs are for<Q¢ < 7 /w and the lower signs are for/w < t < 27 /w,
and

K = kL(7r2)
< 1 bn 5b3,)
1 = _ —
b, = 16b3
b, b2 )
ey (L P (7)
<2bp 42
(s82)
Cc3 = m
1662
by, = poJdctm.
Repeating the analysis for a slab of thicknesand a half-widthr,, gives
K =kL(2r,z)

b
=(1-2m
“ < 2, )

== () K

63=0

b, = podcrp.
For a cylinder, of radius,,, with the field applied perpendicular to the long axis (transverse
b), Goldfarbet al [6] find that thec1 23 are twice those for an axial field (using methods
outlined by Zenkevitctet al [7]). The factor of two accounts for the demagnetization factor
in this orientation:

K = kL(7r2)
o Zn 5h2
1= —
. b, = 8b2
(5 -2)
oo=\——-"=3
p  2b2 ©)
(32)
3= i/
8b2
2
bp = <;>Mojcrm
The total waveform can be expressed as a Fourier series of the form
V(t) = Kbyw Y _(a, COSnwt) + b, sin(nowt)) (10)

n=1
where the dimensionlesss andb,s are given by

1 w 21 /w
a, = (Kbmw><;>/o V(t) coSnwt) dt
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1 w 21 /w .
b, = (Kbma)> <;)/o V(t) sin(nwt) dt.

In the complete solution, the,s are

(8
a = § 2

8
a3=—<§)C2

and all other odd,s are

_ < 4n )
“=NTn+r2m—-2 )%

where values oK andc; 3 are from equations (7)—(9). All evew,s are zero. The,s
represent the loss component of the induced voltage, wieiis the magnitude of the
fundamental frequency. Similarly for ttigs,

and

and

bl =C1
and
b3 = C3

and all othem,s are zero. Thé,s represent the lossless component of the induced voltage,
whereb; is the magnitude of the fundamental frequency. These results are consistent with
Bean'’s results for very small a.c. fields [5]. However, the results above are valid over
a larger field range, i.e. for ah, < b,, and can be used for both cylindrical and slab
geometries with appropriate values@f, 3 andb, (equations (7)—(9)).

2.2. High a.c. fieldsi,, > b))

The analysis can be extended to a.c. fields greater than those required to fully penetrate
the sample. Figure 2 shows the magnetic field profiles which can arise. From a to c, the
a.c. field decreases from its maximum valyeat r = 0, until the profile is fully reversed

(atby = b, —2b, andt = 1,) and from c to e, the a.c. field decreases to its minimum value
—b,, while the gradient of the field is constant. From e to g, the a.c. field increases from its
minimum value until the field profile is fully reversed &t = —b,, +2b, andt = 7 /w +1,

and from g to a, the a.c. field increases to its maximum value and the gradient of the field is
constant. As before, it is possible to write expressions for the magnetic field as a function
of the radius, i.eb(r):

db
0<r<x b(r) = £by F d(r) (rm — 1)
r
db(r)
XKr <y b(r)=+bA:|: (rm_r)
dr
where the upper signs are for<Or < ¢, and the lower signs fotr /o < t < t, + 7 /w, and
Ogrgrm b(r)=+bA:|: dz(r) (rm_r)
r
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Figure 2. Possible magnetic field profiles inside a superconductor for high a.c. fiéldss
the field required to fully penetrate the sample ané the time taken to reverse the a.c. field
(a— d — e—field decreasing; > h — a—field increasing).

where the upper signs are for< t < 7/w and the lower signs for, + 7/w <t < 27 /w
andr, is the time taken to fully reverse the a.c. field:

1 2 P
t, = —cos?t [1— (uo_M)] )
w b,

The induced voltage is
V(t) = Kb,w[c1SiN(wt) £ ¢z SIN(2wt) + ¢3 SiN(3wt)]

where thec; 3 are given by equations (7)—(9) and the upper signs are fr:0< ¢, and
the lower signs fotr/w <t < t, + 7 /w andV (¢) = O for all otherr < 27 /w.

Figure 3 shows the induced voltage as a function of time. It is possible to experimentally
record such voltage waveforms using a digital storage scope or computerized signal analysis
techniques [8-12]. This voltage can also be expressed as a Fourier series in the form of
equation (10):

V(t) = Kbpo Z(a,, cosnwt) + b, sin(nwt)).
n=1

For the complete solution, the odgls are

3
a, = (%) [Z(n:’_l) [1—cos(n + i)wt,)] — Z(n C_’ j) [1- cos((n — j)a)t,)]:| :

i=1 j

Forn=1,j=23;forn=3,j=12;and forn > 5, j = 1, 2, 3. All of the evena,s
are zero. They,s represent the loss component of the induced voltage. Similarly the odd
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Figure 3. The applied a.c. magnetic field and resulting induced voltage shown as a function of
time.

b,s are

1\ [ < 0\ L C ,
b, = _<;> [Z(nc—ﬂ) sin((n + i)et,) — Z(n 9 j> sin((n — j)wt,) — ckwt,] .

i=1 J

Forn=1,k=1andj =2,3;forn =3, k=0andj =1,2; and forn > 5,k =0 and
j =1,2 3. All of the evenb,s are zero. Thé,s represent the lossless component of the
induced voltage.

For the loss component, the harmonic voltages measured at the freguegy,,; (n F))
by the lock-in amplifier (LIA) are simply the time-averaged rms value¥ f), i.e. \/1/2
times the coefficients of coswt), SO V,us(nF) = /1/2K b,,wa,. The lossless voltage lags
behind the applied field, since sitv) = coSwt — 7/2). So for the lossless components,
Vims (W F) = —/1/2Kb,,wb,. Figures 4 and 5 show the loss and lossless components of
the induced voltage for a cylindrical sample in an axial field up to the tenth harmonic. The
solutions have been obtained using the mathematical package MATHCAD v6. As before,
the equivalent equations for a slab (axéland cylinder (transversk) can be obtained by
substituting the appropriate values &, ¢1 3 andb,.

For slab and cylindrical geometries, at the fundamental frequency the loss voltage
increases as,,. For all other odd harmonics, the loss voltage first decreases to a minimum
and then increases monotonically &s (cf. figure 4). For the higher harmonics {5
9F), oscillations can be seen in the induced voltage. In contrast, the fundamental and
third (3F) harmonics of the lossless voltage decrease to a negative value and then increase
monotonically to zero ag,,. For all other odd harmonics, the lossless voltage oscillates,
then decreases to a negative value before rising to zeig, gsf. figure 5). Again, for
the higher harmonics (5-9F), several oscillations can be seen in the induced voltage.
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Figure 4. The loss component of the induced harmonic voltage for a cylinder (&xiathere
the maximum a.c. field is ten times that required to fully penetrate the sample. Note that all of

the even harmonics are zero.
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Figure 5. The lossless component of the induced harmonic voltage for a cylinder @gxial
where the maximum a.c. field is ten times that required to fully penetrate the sample. Note that

all of the even harmonics are zero.

Oscillations similar to these have been found in a.c. susceptibility measurements [13]. For
each of the geometries considered, the minimum value of the lossless voltage is of similar
magnitude for all odd harmonics.

For a cylinder, the initial gradient {,,,/db,,) for all odd harmonics of both the loss

and lossless induced voltages is twice as large for transverse for axialb, and the
field required to fully penetrate the samplg,) is a factor of 27 lower (cf. equations
(7) and (9)). Thus the minimum value of the induced voltage is a factor/af4& 1.27
higher for transversé than for axialb. Table 1 shows the minimum values of the loss and
lossless induced voltagd,(,;(min)) and the fields at which they occus,{min)) for both



Harmonic flux penetration of superconductors 4445

Table 1. Values of V,,,;(min) andb,,s(min) for the loss and lossless induced voltage for both
the cylinder and slab samples (axigl

Loss Lossless

Vims (MiN) bu(min)  Vyug(min) by (min)

Geometry Harmonic  (¢1/v2)Kb,w)  (bp) (=1/vV2)Kbpw)  (bp)
Cylinder 1F 0.00 0.00 0.32 0.80
(axialb)  3F 0.15 135 034 4.60
5F 0.16 3.30 0.34 12.39

7F 0.17 6.28 0.34 24.64

9F 0.17 10.25 0.34 39.68

Slab F 0.00 0.00 0.5 1.00
(axialb)  3F 0.26 175 052 6.00
5F 0.28 4.38 0.52 16.22

7F 0.28 8.33 0.52 31.57

9F 0.30 13.62 0.52 52.04

the cylinder and slab (axidl). From this table, the minimum value of the lossless induced
voltage for the cylinder (axiab) at the fundamental frequency K} is

Vyms(min) = —0.32/ 1K by0. (11)
Using equation (6), the probe constai)(can be written as

mrms

P = (pokw) ™ = (12)

rms

whereV,, is the rms voltage produced by the rms magnetic momep},). Rearranging
equations (7), (11) and (12) gives
_ f2m1‘1715'(min) \/—Z’nrmr(mln)
7 0.32wr2Lyr, V*rm
wherem,,,;(min) is the minimum value of the magnetic moment. This result is about 4%

higher than the standard d.c. result from the critical-state model, namely3m/V*r,, if
2m,.s is substituted for the magnetic moment)( Similarly for transversé

2,5 (MIN

J. = 3_125(2) (M) (14)
4 V*r,

Using the data in table 1 for the infinite slab,

_ N2mp(Min)  24/2m,,,(Min)

T 0.5QLzr,)rm V*rm,

which again is the standard d.c. result for the slab geometry if the same substitution with

/2m,,, is made. The data in table 1 demonstrate that if the substitution is used for higher

harmonics,J, is accurate to within 4%. If the substitution is used in the standard relation

for a rectangular slab, it gives

_2v/2myyg(min)

 V*ap(1—ap/3az)

where 2i1(m) and 2i(m) (a1 > ap) are the width and the thickness of the samples

respectively.

= 3.125< (13)

Je (15)

c
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2.3. Magnetic field profiles

The standard magnetic field profile analysis can be completed by differentiating the
fundamental harmonic of the lossless voltage with respect to the #igld,
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Figure 6. Magnetic field profiles for a slab and a cylinder for the cylinder has been scaled
to that of the slab.

For the cylinder (axiab), with b,, < by,

Vrms (1F) = _\/gKbmwcL
Substituting in forc; gives

by, 5b2
Vos(1F) = /3K, w[l— on 1%2}

and differentiating with respect to the a.c. field,,

1F 2 1552
dvm( ) _ _ [k [1_ b, 5bm:|. (16)
P

b 162

This can be rewritten as

2
|dVrm‘v(1F)/dbm| MAX 16 rm

where the depth that the field penetrate)si$

(5;)
S=r,| —).
bP
Solving this quadratic i, and taking only the physically meaningful solution, gives
S _ 16, (, 15/, ldV.(AF)/db,| \\"?
I'm N 15 16 |dvrmv(1F)/dbm|MAX ’
For small a.c. fields, i.eh, < b,
(1F
r_m<l_ AV, (1F) /dby | ) 18)

s =

2 |dVrmv(1F)/dbm|MAX
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where, from equation (7),
V2 | AV, (1F) v
Iy = .
kLrw dby | yax
For a cylindrical sample (transverdg equation (18) remains valid, and from equation (8),
1 AV, (1F 12
= = 19)
\/Ekan dbm MAX
but § has no simple physical interpretation. Repeating the analysis for the slab gives
| AV, s (1F) /dby |
S=rp|l1—
|dVrms(1F)/dbm|MAX
where, from equation (8),
1 | AV ()
C 2%Lzw|  db,  |yax
This analysis can be extended to find the spatial variatioh. @&). For the cylinder (axial
b), at low a.c. fields, rearranging equations (7), (12) and (16) gives

V2 g (8) | 1 V2 Ay (8)
(mr2)L ds | V* ds

(20)

'm

Je(®) =

where dn,,,;(8)/ds is the differential ofm,,(8) with respect tos. The result is again
similar to the standard d.c. result = dM (§)/d(8) as long as/2m,,,, is substituted for the
magnetic moment. In Campbell’s original magnetic field profile analysis, where the total
flux is measured, the penetration depth is calculated fréfidd (cf. equations (18) and
(20)) and the field inside the sample fram This analysis provides directly the magnetic
field profile of the sample. Figure 6 gives the calculated results of a magnetic field profile
analysis for a slab and a cylinder (axtgl from an analysis at the fundamental frequency.
The x-axis (penetration depthj) for both geometries is calculated using equation (17)
and they-axis (magnetic fielduoM) is simply b,,. This analysis avoids incorporating
non-linear terms and provides a value ®maccurate to a factor of 2. The graph shows
the essential features characteristic of a homogeneous sample: the maximum value of the
penetration depth is approximately equal to the macroscopic dimension of the sample; the
gradient in the magnetic field is approximately constant throughout the sample and a region
of overshoot in the magnetic field profile is expected. In the original work by Campbell,
the total voltage signal was considered and no overshoot found [1].

The magnetic field profile of a granular superconductor can be generated by considering
the superposition of two profiles produced by an intra- and intergradpldfigure 7 shows
such a magnetic field profile where the characteristic dimension of the grains is a third of
that of the sample, but theif, is a factor of ten higher. Fo$ < r,, the figure shows
two gradients in the magnetic field, i.e. two values fof 1§, consistent with two distinct
values ofJ.. This is a simplified description of a granular system since in practice the outer
grains will effectively screen the inner grains. Equally, the two gradients shown in figure
7 cannot be associated with any specific spatial variatioh. if#]. Nevertheless, figures 6
and 7 show that information can still be obtained about the variatiah.ofn our analysis
of a homogeneous sample with a single a peak is seen at the fundamental frequency of
the lossless component of the induced voltage which results in an overshoot in the magnetic
field profile. The presence of two distinct gradients and not the overshoot provides evidence
for granularity.
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Figure 7. The magnetic field profile for a granular superconductor. The two gradients are a
result of the sample having both an inter- and intragranglar

3. Experimental details

3.1. Sample preparation

The sample consisted of a commercial, multifilamentary, superconducting NbTi wire of 61
filaments, each 28&m in diameter. The copper matrix was removed using nitric acid and
the NDbTi filaments stuck together with G.E. varnish. 60 sections were cut, each 3 mm long
and formed into a sample.

3.2. Experimental procedure

Flux penetration measurements were made from 4.2 K dp to magnetic fieldsupto 10 T

[14, 15]. Measurements are made by applying an increasing a.c. field to a superconducting
sample. In agreement with Lenz’s law, currents flow to oppose the penetration of the field.
Bean'’s critical-state model shows that the lossless supercurrents flow to asdapthare

equal toJ.. At intermediate applied a.c. fields, the sample is fully penetrated, i.e. the depth
to which the field penetrates)(is equal to the radius of the sampleg,). At this point, a
current density equal td, flows throughout the entire sample. Eventually high a.c. fields
are applied, above those necessary to fully penetrate the sample.

The primary solenoid in these measurements is a two-component oppositely wound
a.c. superconducting coil which generates sufficient a.c. field to fully penetrate the sample
without quenching the d.c. superconducting magnet [14]. A set of oppositely wound
secondary coils were used to measure the magnetization of the sample. At each field,
both the loss and lossless components of the induced voltage were recorded for the first ten
harmonics with the NbTi filaments perpendicular (transvéis® the a.c. and d.c. field.

3.3. Experimental results

Figure 8 shows the magnetic moment versus a.c. field as a function of temperature for
the NbTi sample in a transverse field of 3 T. In this figure, the signal (i.e. the voltage
across the secondary coils) has been converted into a magnetic moment using the probe’s
calibration constantP was found by calibrating the secondary coils using a Pb sample in
the Meissner state. At an operating frequency of 19.7 Pz 0.277 A n? V~1. The rms
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Figure 8. The magnetic moment versus the a.c. field for the NbTi sample as a function of
temperature in a transverse field of 3 T.

a.c. current has been converted to a rms a.c. field using the coil contan28.7 mT A1)

which was found using a Hall probe. A background signal, taken wihenT,, has been
subtracted from the data. At all temperatures there is a sharp fall in the magnetic moment
to a minimum value when there is full penetration of the sample. The marked increase in
magnetic moment at the lowest temperatures and highest a.c. fields is attributed to eddy
current heating in the copper components of the probe. Other similar measurements on
Chevrel phase superconductors confirm the generality of these results [16].

4. Analysis of the results

4.1. Magnetic field profiles

Using the data in figure 8, it is possible to determine magnetic field profiles inside the NbTi
sample in terms o andC. The magnetic field inside the sampley{) is

uoM = b, = Cka

wherel, is the peak value of the current in the primary coil during a cycle. The penetration
depth is approximated by

( |dVrms(1F)/dIrms| >
S=rull—
|dVrms(1F)/dIrms|MAX
where the appropriate value fey, is found using equations (18), (19) or (20). For the

cylinder (transversé) considered here,
Y2 (wo P |dVis(1F) e
wax)  \2mnLC| AL |yax

_ < 1 ‘dvrms(lF)
" \/Ekera) dbm
wheren is the number of filaments (i.e. 3668 60 x 61) and d/,,,(1F)/dl,,, is the
differential of the signal voltage across the secondary coils with respect to the current in
the primary coil. Figure 9 shows the spatial variation in the magnetic fieid1) as a
function of temperature for the sample. The gradient of the linas/@$) as a function of
penetration depth gives the spatial variation/of
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Figure 9. The magnetic field profile inside the NbTi sample as a function of temperature in a
transverse field of 3 T.

Only in the case of the axial field orientation carbe strictly equated to the depth
to which the field penetrates, or the magnetization considered as the difference between
the applied field and the internal field [17, 18]. However in other geometries, such as
the transverse orientation measured here, these quantities can usefully be described by
this physical interpretation. In addition, the magnetic measuremenfs oén be directly
compared with complementary transport measurements when the sample is in the transverse
orientation since there is equivalent current flow in the filaments for both measurements.

It can be seen that the gradient of the lines in figure 9 and hénie approximately
constant throughout the sample. This is expected as surface pinning is not a significant
mechanism in this wire. The minimum in the magnetic moment (in figure 8) corresponds to
an apparent penetration of the magnetic field to a depth greater than the radius of the sample
(in figure 9). The fact that this is a artifact of the analysis has been shown in section 2 and
is expected even for a bulk pinning superconductor such as NbTi.
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Figure 10. The critical current density of NbTi as a function of field and temperature.
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4.2. Critical current density

From the minimum value of the magnetic moment, the coil geometry and the dimensions
of the sample, it is possible to calculate the average critical current density at each field
and temperature (using equation (14)). This is shown in figure 10. The valugsawé
accurate to about 10%, primarily due to uncertainties in the sample dimensions.

At 6 T and 6 K, J, is 6.2 x 10° A m~2 which is in good agreement with transport
current measurements on the same wire that give a valuegdof 60° A m=2 [19]. These
values ofJ, are typical for commercial NbTi wires, although higher valueg.ohave been
obtained in multifilamentary NbTi by introducing artificial pinning centres to gly&alues
of greater than & 101° Am=2at 1 T and 4.2 K [20-22].
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Figure 11. The harmonic response of the loss component of the induced voltage for NbTi at
6 K in a transverse field of 3 T.
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Figure 12. The harmonic response of the lossless component of the induced voltage for NbTi
at 6 K in atransverse field of 3 T.
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5. Harmonic analysis

Figures 11 and 12 show the harmonic response of both the loss and lossless components
of the magnetic moment of NbTi in a transverse field. A background signal, taken when
T > T,, has been subtracted from all data. During the experiment a line filter was used
to reduce noise and improve the quality of the data. The thifd) (8armonic of 19.7 Hz
lies close to the line frequency (60 Hz in the USA). The filter both attenuates the signal by
a factor of 0.65 and introduces a phase shift of.20he 3¢ data have been adjusted to
compensate for the filter.

The results are in good agreement with the theoretical predictions in section 2 (cf. figures
4 and 5). All of the even harmonics are zero, i.e. less thafl 1V, and the odd harmonics
are of the correct sign and functional form. For the loss components (figure 11), there is a
factor of 2 in the field at which there is a minimum in the magnetic momignt,  between
3F and % while the magnitude of the minimum voltageg,(,) are similar (consistent
with figure 4). For the lossless components (cf. figure 12), there is a factor ofbg;,in
between ¥ and & and again the magnitudes of these minimum voltadgs, | are similar
(consistent with figure 5).

6. Conclusion

A critical-state model has been used to calculate the magnitude and the functional form of
the magnetic response of a superconducting sample in an applied a.c. magnetic field. The
analysis has been performed for both a cylinder and a slab geometry and evaluated up to
the tenth harmonic.

In flux penetration measurements the lossless component of the induced voltage is
recorded at the fundamental frequency. Initially, there is a sharp fall in this voltage to a
minimum value. Then, the voltage slowly increases as the a.c. field increases beyond that
required for full penetration. This result does not depend on the microstructural properties of
the sample. This explains that the presence of an overshoot in the magnetic field profile is an
artifact of the analysis and cannot be used as direct evidence for granularity. Experimental
confirmation of the overshoot in non-granular superconducting materials has been provided.

It is shown that standard expressions derived using the critical-state model relating the
current density/.. to the d.c. magnetic moment can be used in a.c. measurements to within
an accuracy of 4% by replacing the term for the d.c. magnetic momer{2ay,,,.,(min),
wherem,,,,;(min) is the minimum lossless rms magnetic moment.

Flux penetration measurements have been made on commercial, multiflamentary NbTi,
a high-/, superconductor which exhibits strong bulk pinning. The results have been used to
calculate the functional form and spatial variation/ofis a function of field and temperature.

The values ofJ.(B, T) are very similar to transport current measurements on the same
sample.

The experimental magnetic field profiles and harmonic response of NbTi are consistent
with the theoretical analysis for a bulk pinning, homogeneous superconductor.
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