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Abstract

Systematic measurements have been made of the E—J characteristics of a Nb;Sn wire over four decades of electric
field (0.1-1000 pVm~") and five decades of current density (10°-5 x 10> Am~2) as a function of magnetic field, tem-
perature and strain. They were parameterised using the power law E = «J”. At low magnetic fields n tends to a constant
saturation value, which decreases at high compressive and tensile strains and increases with increasing electric field. In
the high magnetic-field range, n is independent of E-field and can be approximated by a strain and temperature scaling
law of the form n(B, T,¢) = G(T)(B%(T,¢) — B), where B, (T, ¢) is an effective upper critical field.
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1. Introduction

The electric field—current density (E—J) charac-
teristics of a superconducting wire can be de-
scribed by the power law E = aJ". The n-values
provide important technological data for high E
(fusion) and low E (NMR) magnet systems, and
can be related to the microstructure of the wire
and the transition from the flux-pinned to flux-
flow state [1,2]. This paper presents detailed mea-
surements of the n-value as a function of field,
temperature and strain.
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2. Experimental details

Measurements were made on a standard 0.81
mm diameter bronze-route NbsSn multifilamen-
tary wire on a copper—beryllium alloy spring
sample-holder using the Durham J.(B, T, ¢) probe
[3]- The current (/) was slowly increased, and the
voltage (V) across a section of the wire was mea-
sured using a nanovolt amplifier and digital volt-
meter. In addition, AC resistance measurements
were made to determine the upper critical field
(BalT¢)).

The shunt resistance was measured at 20 K as a
function of field, and a shunt current was sub-
tracted from the total current. In addition, a linear
thermal offset voltage (typically ~2 pVA~!) was
subtracted from the measured voltage. Finally, £
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and J were calculated from the V'—/ data using the
tap separation (20.3 mm) and the cross-sectional
area of the wire (5.15 x 1077 m?).

3. Results and discussion

Fig. 1 shows on a log-log scale a typical set of
E—J characteristics at different fields measured at
0% applied strain at 12 K. The high-field data are
almost completely straight over four decades of
electric field. The n-values for the electric-field
range 10-100 pVm~' are plotted as a function of
strain at 8 K in Fig. 2 and at 12 K in Fig. 3. At
both temperatures, the n-values for a given field
peak at ¢ = 0.33%.

Fig. 4 shows n for the range 1-10 pVm™' as a
function of field at different strains at 12 K. Above
B, n is close to 1, corresponding to ohmic E—J
characteristics. At high fields, below B, 0n/0B is
independent of magnetic field, electric field and
strain. At low fields n approaches a saturation
value (ny), which has a maximum at ¢ = 0.33% and
decreases for high compressive and tensile strains.
Fig. 5 shows n for two different E-field ranges as a
function of field at different strains at 8§ K. For the
higher E-field range (10-100 uVm™') the satura-
tion of n occurs at a higher value and a lower
magnetic field. The n-values for the ranges 0.1-1
and 100-1000 uV m~! (not shown) have even lower
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Fig. 1. A log-log plot of the electric field (E) versus engineering

current density (J) for the wire at 12 K, at 0% applied strain and
at half-integer magnetic fields between 3 and 15 T.
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Fig. 2. The n-value for the electric-field range 10-100 uVm~" as
a function of applied strain (¢) at 8 K and at integer magnetic
fields between 2 and 15 T.
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Fig. 3. The n-value for the range 10-100 uVm~! as a function
of applied strain (¢) at 12 K and at half-integer magnetic fields
between 0.5 and 4 T and integer fields between 4 and 12 T.

and even higher values of n, respectively. At high
fields » is independent of the E-field range, corre-
sponding to power law E-J characteristics. The
data at 4.2 and 12 K show similar features to the
8 K data.

An effective upper critical field (B, (7T,¢)) at 8
and 12 K can be obtained for strains above
—1.11% by extrapolating the linear part of the
n(B) curves to n = 0. These values are plotted in
Fig. 6, along with AC resistivity measurements of
B, defined at 5%, 50% and 95% of the normal

state resistivity (p,). It can be seen that B}, ~ B
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Fig. 4. The n-value for the range 1-10 pVm™!

magnetic field (B) at different applied strains (¢) at 12 K.
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Fig. 6. The upper critical field (B,,) as a function of applied
strain (¢) at 8 and 12 K. B, was determined at 5%, 50% and 95%
of the normal state resistivity (p,), and also an effective value
(B,) was determined from the n-value data.
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Fig. 5. The n-value for the range 1-10 pVm™! (closed symbols)
and 10-100 uVm~' (open symbols) as a function of magnetic
field (B) at different applied strains (¢) at 8 K.

except near the peak (at ¢ = 0.33%). The n(B) data
at 8 and 12 K have been replotted as a universal
function of B — B, in Fig. 7. At fields above the
saturation region the n-value can be approximated
by

I’l(B,T,S):G(T)( :Z(Tae)fB)v (1)

where G =2.75 T~! at § K and 1.95 T~! at 12 K.

It is proposed that in the high-field region the
intrinsic properties of the wire determine n, while
in the low-field region extrinsic properties cause 7
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Fig. 7. The n-value for the ranges 1-10 and 10-100 pVm~' as a
function of magnetic field (B) minus an effective upper critical
field (B,). The straight lines show the gradients (—G) of the
linear parts of the data at 8 and 12 K.

to saturate in a way that depends on the strain
state and the E-field range [1].

4. Conclusions
The E—-J characteristics of a Nb3;Sn wire were

measured as a function of magnetic field, tempera-
ture and strain and parameterised using the power
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law E = aJ". Electric fields between 0.1 pVm~! (2
nV) and 1000 pVm~" (20 uV) and current densities
between 2 x 10> Am~2 (1 mA) and 5 x 108 Am™2
(250 A) were measured. The n-value tends to a
constant value at low fields that is independent of
temperature, but decreases at high compressive
and tensile strains and low electric fields. In the
high magnetic-field range, n is independent of E-
field and can be approximated by a linear function
of B— B, with a strain-independent gradient,
where B, is an effective upper critical field.
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