

Physica C 372-376 (2002) 1291-1294

www.elsevier.com/locate/physc

E–J characteristics and *n*-values of a niobium–tin superconducting wire as a function of magnetic field, temperature and strain

D.M.J. Taylor *, S.A. Keys, D.P. Hampshire

Superconductivity Group, Department of Physics, University of Durham, Durham DH1 3LE, UK

Abstract

Systematic measurements have been made of the E-J characteristics of a Nb₃Sn wire over four decades of electric field (0.1–1000 μ V m⁻¹) and five decades of current density (10³–5 × 10⁸ A m⁻²) as a function of magnetic field, temperature and strain. They were parameterised using the power law $E = \alpha J^n$. At low magnetic fields *n* tends to a constant saturation value, which decreases at high compressive and tensile strains and increases with increasing electric field. In the high magnetic-field range, *n* is independent of *E*-field and can be approximated by a strain and temperature scaling law of the form $n(B, T, \varepsilon) = G(T)(B_{c2}^*(T, \varepsilon) - B)$, where $B_{c2}^*(T, \varepsilon)$ is an effective upper critical field. \mathbb{C} 2002 Elsevier Science B.V. All rights reserved.

Keywords: Niobium-tin; Strain; E-J characteristics; n-value; Scaling

1. Introduction

The electric field-current density (E-J) characteristics of a superconducting wire can be described by the power law $E = \alpha J^n$. The *n*-values provide important technological data for high *E* (fusion) and low *E* (NMR) magnet systems, and can be related to the microstructure of the wire and the transition from the flux-pinned to fluxflow state [1,2]. This paper presents detailed measurements of the *n*-value as a function of field, temperature and strain.

2. Experimental details

Measurements were made on a standard 0.81 mm diameter bronze-route Nb₃Sn multifilamentary wire on a copper-beryllium alloy spring sample-holder using the Durham $J_c(B, T, \varepsilon)$ probe [3]. The current (*I*) was slowly increased, and the voltage (*V*) across a section of the wire was measured using a nanovolt amplifier and digital voltmeter. In addition, AC resistance measurements were made to determine the upper critical field $(B_{c2}(T, \varepsilon))$.

The shunt resistance was measured at 20 K as a function of field, and a shunt current was subtracted from the total current. In addition, a linear thermal offset voltage (typically $\sim 2 \text{ pV A}^{-1}$) was subtracted from the measured voltage. Finally, *E*

^{*} Corresponding author. Fax: +44-191-3743749.

E-mail address: d.m.j.taylor@dur.ac.uk (D.M.J. Taylor).

^{0921-4534/02/\$ -} see front matter © 2002 Elsevier Science B.V. All rights reserved. PII: S0921-4534(02)01012-2

and J were calculated from the V–I data using the tap separation (20.3 mm) and the cross-sectional area of the wire $(5.15 \times 10^{-7} \text{ m}^2)$.

3. Results and discussion

Fig. 1 shows on a log-log scale a typical set of *E-J* characteristics at different fields measured at 0% applied strain at 12 K. The high-field data are almost completely straight over four decades of electric field. The *n*-values for the electric-field range 10–100 μ V m⁻¹ are plotted as a function of strain at 8 K in Fig. 2 and at 12 K in Fig. 3. At both temperatures, the *n*-values for a given field peak at $\varepsilon = 0.33\%$.

Fig. 4 shows *n* for the range 1–10 μ V m⁻¹ as a function of field at different strains at 12 K. Above B_{c2} , *n* is close to 1, corresponding to ohmic *E*–*J* characteristics. At high fields, below B_{c2} , $\partial n/\partial B$ is independent of magnetic field, electric field and strain. At low fields *n* approaches a saturation value (n_0), which has a maximum at $\varepsilon = 0.33\%$ and decreases for high compressive and tensile strains. Fig. 5 shows *n* for two different *E*-field ranges as a function of field at different strains at 8 K. For the higher *E*-field range (10–100 μ V m⁻¹) the saturation of *n* occurs at a higher value and a lower magnetic field. The *n*-values for the ranges 0.1–1 and 100–1000 μ V m⁻¹ (not shown) have even lower

Fig. 1. A log-log plot of the electric field (*E*) versus engineering current density (*J*) for the wire at 12 K, at 0% applied strain and at half-integer magnetic fields between 3 and 15 T.

Fig. 2. The *n*-value for the electric-field range $10-100 \,\mu\text{V}\,\text{m}^{-1}$ as a function of applied strain (ϵ) at 8 K and at integer magnetic fields between 2 and 15 T.

Fig. 3. The *n*-value for the range $10-100 \ \mu V m^{-1}$ as a function of applied strain (ϵ) at 12 K and at half-integer magnetic fields between 0.5 and 4 T and integer fields between 4 and 12 T.

and even higher values of n_0 respectively. At high fields *n* is independent of the *E*-field range, corresponding to power law *E*-*J* characteristics. The data at 4.2 and 12 K show similar features to the 8 K data.

An effective upper critical field $(B_{c2}^*(T,\varepsilon))$ at 8 and 12 K can be obtained for strains above -1.11% by extrapolating the linear part of the n(B) curves to n = 0. These values are plotted in Fig. 6, along with AC resistivity measurements of B_{c2} defined at 5%, 50% and 95% of the normal state resistivity (ρ_n). It can be seen that $B_{c2}^* \approx B_{c2}^{0.5\rho_n}$

Fig. 4. The *n*-value for the range $1-10 \ \mu V m^{-1}$ as a function of magnetic field (*B*) at different applied strains (ε) at 12 K.

Fig. 5. The *n*-value for the range $1-10 \ \mu V m^{-1}$ (closed symbols) and $10-100 \ \mu V m^{-1}$ (open symbols) as a function of magnetic field (*B*) at different applied strains (ε) at 8 K.

except near the peak (at $\varepsilon = 0.33\%$). The n(B) data at 8 and 12 K have been replotted as a universal function of $B - B_{c2}^*$ in Fig. 7. At fields above the saturation region the *n*-value can be approximated by

$$n(B,T,\varepsilon) = G(T)(B^*_{c2}(T,\varepsilon) - B), \tag{1}$$

where $G = 2.75 \text{ T}^{-1}$ at 8 K and 1.95 T⁻¹ at 12 K.

It is proposed that in the high-field region the intrinsic properties of the wire determine n, while in the low-field region extrinsic properties cause n

Fig. 6. The upper critical field (B_{c2}) as a function of applied strain (ε) at 8 and 12 K. B_{c2} was determined at 5%, 50% and 95% of the normal state resistivity (ρ_n), and also an effective value (B_{c2}^*) was determined from the *n*-value data.

Fig. 7. The *n*-value for the ranges 1–10 and 10–100 μ V m⁻¹ as a function of magnetic field (*B*) minus an effective upper critical field (B_{c2}^*). The straight lines show the gradients (*-G*) of the linear parts of the data at 8 and 12 K.

to saturate in a way that depends on the strain state and the *E*-field range [1].

4. Conclusions

The E-J characteristics of a Nb₃Sn wire were measured as a function of magnetic field, temperature and strain and parameterised using the power law $E = \alpha J^n$. Electric fields between 0.1 μ V m⁻¹ (2 nV) and 1000 μ V m⁻¹ (20 μ V) and current densities between 2 × 10³ A m⁻² (1 mA) and 5 × 10⁸ A m⁻² (250 A) were measured. The *n*-value tends to a constant value at low fields that is independent of temperature, but decreases at high compressive and tensile strains and low electric fields. In the high magnetic-field range, *n* is independent of *E*-field and can be approximated by a linear function of $B - B_{c2}^*$ with a strain-independent gradient, where B_{c2}^* is an effective upper critical field.

Acknowledgements

The authors thank Oxford Instruments PLC and EPSRC for support.

References

- [1] W.H. Warnes, D.C. Larbalestier, Cryogenics 26 (1986) 643.
- [2] D.P. Hampshire, H. Jones, Cryogenics 27 (1987) 608.
- [3] N. Cheggour, D.P. Hampshire, Rev. Sci. Instr. 71 (2000) 4521.